Back to project page android_effects.
The source code is released under:
Apache License
If you think the Android project android_effects listed in this page is inappropriate, such as containing malicious code/tools or violating the copyright, please email info at java2s dot com, thanks.
/* Copyright 2013 Harri Smatt//from w w w.ja va 2s . c o m Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package fi.harism.effects; import java.nio.ByteBuffer; import java.nio.ByteOrder; import java.nio.FloatBuffer; import javax.microedition.khronos.egl.EGLConfig; import javax.microedition.khronos.opengles.GL10; import android.content.Context; import android.opengl.GLES20; import android.opengl.Matrix; import android.os.SystemClock; public class ViewCircles extends ViewBase { private final int CIRCLE_SPLITS = 8; private final int CIRCLE_VERTICES = 100; private FloatBuffer mBufferCircle; private ByteBuffer mBufferQuad; private Circle[] mCircles = new Circle[3]; private EffectsShader mShaderBackground = new EffectsShader(); private EffectsShader mShaderCircle = new EffectsShader(); private boolean[] mShaderCompilerSupport = new boolean[1]; public ViewCircles(Context context) { super(context); final byte[] QUAD = { -1, 1, -1, -1, 1, 1, 1, -1 }; mBufferQuad = ByteBuffer.allocateDirect(8); mBufferQuad.put(QUAD).position(0); mBufferCircle = ByteBuffer.allocateDirect(4 * 4 * CIRCLE_VERTICES) .order(ByteOrder.nativeOrder()).asFloatBuffer(); for (int i = 0; i < CIRCLE_VERTICES; ++i) { float t = (float) i / (CIRCLE_VERTICES - 1); mBufferCircle.put(t).put(1).put(t).put(0); } mBufferCircle.position(0); for (int i = 0; i < mCircles.length; ++i) { mCircles[i] = new Circle(); } setEGLContextClientVersion(2); setRenderer(this); setRenderMode(RENDERMODE_CONTINUOUSLY); } @Override public void onDrawFrame(GL10 unused) { if (mShaderCompilerSupport[0] == false) { GLES20.glClearColor(0f, 0f, 0f, 0f); GLES20.glClear(GLES20.GL_COLOR_BUFFER_BIT); return; } mShaderBackground.useProgram(); GLES20.glUniform4f(mShaderBackground.getHandle("uColorInner"), 1.0f, 0.95f, 0.6f, 1.0f); GLES20.glUniform4f(mShaderBackground.getHandle("uColorCenter"), 0.7f, 0.5f, 0.2f, 1.0f); GLES20.glUniform4f(mShaderBackground.getHandle("uColorOuter"), 0.4f, 0.65f, 1.0f, 1.0f); GLES20.glVertexAttribPointer(mShaderBackground.getHandle("aPosition"), 2, GLES20.GL_BYTE, false, 0, mBufferQuad); GLES20.glEnableVertexAttribArray(mShaderBackground .getHandle("aPosition")); GLES20.glDrawArrays(GLES20.GL_TRIANGLE_STRIP, 0, 4); mShaderCircle.useProgram(); GLES20.glUniform4f(mShaderCircle.getHandle("uColor"), 1f, 1f, 1f, 1f); GLES20.glVertexAttribPointer(mShaderCircle.getHandle("aPosition"), 2, GLES20.GL_FLOAT, false, 0, mBufferCircle); GLES20.glEnableVertexAttribArray(mShaderCircle.getHandle("aPosition")); for (Circle circle : mCircles) { float[] radiusInner = circle.getRadiusInner(); float[] radiusOuter = circle.getRadiusOuter(); int maxLength = Math.min(radiusInner.length, radiusOuter.length); GLES20.glUniformMatrix4fv(mShaderCircle.getHandle("uModelMatrix"), 1, false, circle.getModelMatrix(), 0); for (int i = 0; i < maxLength; ++i) { float angleSource = (float) (2.0 * Math.PI * i / (maxLength - 1)); float angleTarget = (float) (2.0 * Math.PI * (i + 1) / (maxLength - 1)); GLES20.glUniform1f(mShaderCircle.getHandle("uAngleSource"), angleSource); GLES20.glUniform1f(mShaderCircle.getHandle("uAngleTarget"), angleTarget); GLES20.glUniform1f(mShaderCircle.getHandle("uRadiusInner"), radiusInner[i]); GLES20.glUniform1f(mShaderCircle.getHandle("uRadiusOuter"), radiusOuter[i]); GLES20.glDrawArrays(GLES20.GL_TRIANGLE_STRIP, 0, 2 * CIRCLE_VERTICES); } } } @Override public void onSurfaceChanged(GL10 unused, int width, int height) { float aspect = (float) width / height; final float[] projectionMatrix = new float[16]; Matrix.orthoM(projectionMatrix, 0, -aspect, aspect, -1f, 1f, 0.1f, 10f); mShaderCircle.useProgram(); GLES20.glUniformMatrix4fv(mShaderCircle.getHandle("uProjectionMatrix"), 1, false, projectionMatrix, 0); } @Override public void onSurfaceCreated(GL10 unused, EGLConfig config) { // Check if shader compiler is supported. GLES20.glGetBooleanv(GLES20.GL_SHADER_COMPILER, mShaderCompilerSupport, 0); // If not, show user an error message and return immediately. if (!mShaderCompilerSupport[0]) { String msg = getContext().getString(R.string.error_shader_compiler); showError(msg); return; } try { String vertexSource, fragmentSource; vertexSource = loadRawString(R.raw.background_vs); fragmentSource = loadRawString(R.raw.background_fs); mShaderBackground.setProgram(vertexSource, fragmentSource); vertexSource = loadRawString(R.raw.circle_vs); fragmentSource = loadRawString(R.raw.circle_fs); mShaderCircle.setProgram(vertexSource, fragmentSource); } catch (Exception ex) { showError(ex.getMessage()); } } private class Circle { private final float[] mModelMatrix = new float[16]; private final float[] mPositionSource = new float[2]; private final float[] mPositionTarget = new float[2]; private long mPositionTime, mPositionDuration; private final float[] mRadiusInner = new float[CIRCLE_SPLITS]; private final float[] mRadiusInnerSource = new float[CIRCLE_SPLITS]; private final float[] mRadiusInnerTarget = new float[CIRCLE_SPLITS]; private long mRadiusInnerTime, mRadiusInnerDuration; private final float[] mRadiusOuter = new float[CIRCLE_SPLITS]; private final float[] mRadiusOuterSource = new float[CIRCLE_SPLITS]; private final float[] mRadiusOuterTarget = new float[CIRCLE_SPLITS]; private long mRadiusOuterTime, mRadiusOuterDuration; private float mRotationSource; private float mRotationTarget; private long mRotationTime, mRotationDuration; public float[] getModelMatrix() { long time = SystemClock.uptimeMillis(); if (time - mPositionTime > mPositionDuration) { for (int i = 0; i < 2; ++i) { mPositionSource[i] = mPositionTarget[i]; mPositionTarget[i] = (float) (Math.random() * 2.0 - 1.0); } mPositionTime = time; mPositionDuration = (long) (Math.random() * 5000) + 5000; } if (time - mRotationTime > mRotationDuration) { mRotationSource = mRotationTarget; mRotationTarget = (float) (360.0 * Math.random()); mRotationTime = time; mRotationDuration = (long) (Math.random() * 5000) + 5000; } float tPosition = (float) (time - mPositionTime) / mPositionDuration; tPosition = tPosition * tPosition * (3 - 2 * tPosition); float tRotation = (float) (time - mRotationTime) / mRotationDuration; tRotation = tRotation * tRotation * (3 - 2 * tRotation); float x = mPositionSource[0] + (mPositionTarget[0] - mPositionSource[0]) * tPosition; float y = mPositionSource[1] + (mPositionTarget[1] - mPositionSource[1]) * tPosition; Matrix.setIdentityM(mModelMatrix, 0); Matrix.translateM(mModelMatrix, 0, x, y, -5); float angle = mRotationSource + (mRotationTarget - mRotationSource) * tRotation; Matrix.rotateM(mModelMatrix, 0, angle, 0, 0, 1); return mModelMatrix; } public float[] getRadiusInner() { long time = SystemClock.uptimeMillis(); if (time - mRadiusInnerTime > mRadiusInnerDuration) { for (int i = 0; i < 8; ++i) { mRadiusInnerSource[i] = mRadiusInnerTarget[i]; mRadiusInnerTarget[i] = (float) (Math.random() * 0.2 + 0.4); } mRadiusInnerTime = time; mRadiusInnerDuration = (long) (Math.random() * 5000) + 5000; } float t = (float) (time - mRadiusInnerTime) / mRadiusInnerDuration; t = t * t * (3 - 2 * t); for (int i = 0; i < 8; ++i) { mRadiusInner[i] = mRadiusInnerSource[i] + (mRadiusInnerTarget[i] - mRadiusInnerSource[i]) * t; } return mRadiusInner; } public float[] getRadiusOuter() { long time = SystemClock.uptimeMillis(); if (time - mRadiusOuterTime > mRadiusOuterDuration) { for (int i = 0; i < 8; ++i) { mRadiusOuterSource[i] = mRadiusOuterTarget[i]; mRadiusOuterTarget[i] = (float) (Math.random() * 0.2 + 0.6); } mRadiusOuterTime = time; mRadiusOuterDuration = (long) (Math.random() * 5000) + 5000; } float t = (float) (time - mRadiusOuterTime) / mRadiusOuterDuration; t = t * t * (3 - 2 * t); for (int i = 0; i < 8; ++i) { mRadiusOuter[i] = mRadiusOuterSource[i] + (mRadiusOuterTarget[i] - mRadiusOuterSource[i]) * t; } return mRadiusOuter; } } }