Back to project page hacktoolkit-android_lib.
The source code is released under:
MIT License
If you think the Android project hacktoolkit-android_lib listed in this page is inappropriate, such as containing malicious code/tools or violating the copyright, please email info at java2s dot com, thanks.
package com.hacktoolkit.android.maps; /*w ww. j a va2 s . c o m*/ import com.hacktoolkit.android.constants.GeoConstants; public class MapUtils { /** * Calculates the Cartesian distance of two points represented as lat-long pairs * * It's much harder to calculate geographical distances with precision on the geographic coordinate system, * because the Earth is spherical and not flat. * Assuming a 2D model of the earth would produce inaccurate results over large distances or areas * * http://en.wikipedia.org/wiki/Geographical_distance * http://en.wikipedia.org/wiki/Euclidean_distance * * For some simpler purposes, and within smaller areas, a Cartesian model can be used * Good old middle school math and Pythagorean theorem will do: * (a^2 + b^2 = c^2) * or * distance = sqrt((x2 - x1)^2 + (y2 - y1)^2) * * Since the sqrt operation is relatively expensive, we'll just keep the squares * * @param previousLatitude * @param previousLongitude * @param newLatitude * @param newLongitude * @return the sum of the squares, which we will normalize into a score (?) */ public static double geographicalCartesianDistance( double previousLatitude, double previousLongitude, double newLatitude, double newLongitude) { double deltaX = Math.abs(newLatitude - previousLatitude); double deltaY = Math.abs(newLongitude - previousLongitude); double sumOfSquares = deltaX * deltaX + deltaY * deltaY; return sumOfSquares; } /** * * @return */ /** * Calculates approximate geographical distance using great circle formula * * http://en.wikipedia.org/wiki/Great-circle_distance * The Earth is nearly spherical (see Earth radius) so great-circle distance formulas give the distance between points on * the surface of the Earth (as the crow flies) correct to within 0.5% or so. * Earth radius is the distance from Earth's center to its surface, about 6,371 kilometers (3,959 mi). * This length is also used as a unit of distance, especially in astronomy and geology, where it is usually denoted by R_\oplus. * * Let \phi_1,\lambda_1 and \phi_2,\lambda_2 be the geographical latitude and longitude of two points 1 and 2, * and \Delta\phi,\Delta\lambda their absolute differences; * then \Delta\sigma, the central angle between them, is given by the spherical law of cosines: * \Delta\sigma=\arccos\bigl(\sin\phi_1\sin\phi_2+\cos\phi_1\cos\phi_2\cos\Delta\lambda\bigr). * The distance d, i.e. the arc length, for a sphere of radius r and \Delta\sigma given in * d = r \, \Delta\sigma. * * @param previousLatitude * @param previousLongitude * @param newLatitude * @param newLongitude * @return distance in kilometers */ public static double geographicalGreatCircleDistance( double previousLatitude, double previousLongitude, double newLatitude, double newLongitude) { // absolute difference in latitude //double deltaPhi = Math.abs(newLatitude - previousLatitude); // absolute difference in longitude double deltaLambda = Math.abs(newLongitude - previousLongitude); // central angle double deltaSigma = Math.acos((Math.sin(previousLatitude) * Math.sin(newLatitude)) + (Math.cos(previousLatitude) * Math.cos(newLatitude) * Math.cos(deltaLambda))); // arc length double distanceKm = deltaSigma * GeoConstants.EARTH_RADIUS_MEAN_KM; return distanceKm; } }