Back to project page PictureMap.
The source code is released under:
GNU General Public License
If you think the Android project PictureMap listed in this page is inappropriate, such as containing malicious code/tools or violating the copyright, please email info at java2s dot com, thanks.
/* * Rational.java// w ww .j a va 2 s. com * * This class is public domain software - that is, you can do whatever you want * with it, and include it software that is licensed under the GNU or the * BSD license, or whatever other licence you choose, including proprietary * closed source licenses. Similarly, I release this Java version under the * same license, though I do ask that you leave this header in tact. * * If you make modifications to this code that you think would benefit the * wider community, please send me a copy and I'll post it on my site. * * If you make use of this code, I'd appreciate hearing about it. * drew.noakes@drewnoakes.com * Latest version of this software kept at * http://drewnoakes.com/ * * Created on 6 May 2002, 18:06 * Updated 26 Aug 2002 by Drew * - Added toSimpleString() method, which returns a simplified and hopefully more * readable version of the Rational. i.e. 2/10 -> 1/5, and 10/2 -> 5 * Modified 29 Oct 2002 (v1.2) * - Improved toSimpleString() to factor more complex rational numbers into * a simpler form * i.e. * 10/15 -> 2/3 * - toSimpleString() now accepts a boolean flag, 'allowDecimals' which will * display the rational number in decimal form if it fits within 5 digits * i.e. * 3/4 -> 0.75 when allowDecimal == true */ package com.drewChanged.lang; /** * Immutable class for holding a rational number without loss of precision. Provides * a familiar representation via toString() in form <code>numerator/denominator</code>. * <p> * @author Drew Noakes http://drewnoakes.com */ public class Rational { /** * Holds the numerator. */ private final int numerator; /** * Holds the denominator. */ private final int denominator; private int maxSimplificationCalculations = 1000; /** * Creates a new instance of Rational. Rational objects are immutable, so * once you've set your numerator and denominator values here, you're stuck * with them! */ public Rational(int numerator, int denominator) { this.numerator = numerator; this.denominator = denominator; } /** * Returns the value of the specified number as a <code>double</code>. * This may involve rounding. * * @return the numeric value represented by this object after conversion * to type <code>double</code>. */ public double doubleValue() { return (double)numerator / (double)denominator; } /** * Returns the value of the specified number as a <code>float</code>. * This may involve rounding. * * @return the numeric value represented by this object after conversion * to type <code>float</code>. */ public float floatValue() { return (float)numerator / (float)denominator; } /** * Returns the value of the specified number as a <code>byte</code>. * This may involve rounding or truncation. This implementation simply * casts the result of <code>doubleValue()</code> to <code>byte</code>. * * @return the numeric value represented by this object after conversion * to type <code>byte</code>. */ public final byte byteValue() { return (byte)doubleValue(); } /** * Returns the value of the specified number as an <code>int</code>. * This may involve rounding or truncation. This implementation simply * casts the result of <code>doubleValue()</code> to <code>int</code>. * * @return the numeric value represented by this object after conversion * to type <code>int</code>. */ public final int intValue() { return (int)doubleValue(); } /** * Returns the value of the specified number as a <code>long</code>. * This may involve rounding or truncation. This implementation simply * casts the result of <code>doubleValue()</code> to <code>long</code>. * * @return the numeric value represented by this object after conversion * to type <code>long</code>. */ public final long longValue() { return (long)doubleValue(); } /** * Returns the value of the specified number as a <code>short</code>. * This may involve rounding or truncation. This implementation simply * casts the result of <code>doubleValue()</code> to <code>short</code>. * * @return the numeric value represented by this object after conversion * to type <code>short</code>. */ public final short shortValue() { return (short)doubleValue(); } /** * Returns the denominator. */ public final int getDenominator() { return this.denominator; } /** * Returns the numerator. */ public final int getNumerator() { return this.numerator; } /** * Returns the reciprocal value of this obejct as a new Rational. * @return the reciprocal in a new object */ public Rational getReciprocal() { return new Rational(this.denominator, this.numerator); } /** * Checks if this rational number is an Integer, either positive or negative. */ public boolean isInteger() { if (denominator == 1 || (denominator != 0 && (numerator % denominator == 0)) || (denominator == 0 && numerator == 0) ) { return true; } else { return false; } } /** * Returns a string representation of the object of form <code>numerator/denominator</code>. * @return a string representation of the object. */ public String toString() { return numerator + "/" + denominator; } /** * Returns the simplest represenation of this Rational's value possible. */ public String toSimpleString(boolean allowDecimal) { if (denominator == 0 && numerator != 0) { return toString(); } else if (isInteger()) { return Integer.toString(intValue()); } else if (numerator != 1 && denominator % numerator == 0) { // common factor between denominator and numerator int newDenominator = denominator / numerator; return new Rational(1, newDenominator).toSimpleString(allowDecimal); } else { Rational simplifiedInstance = getSimplifiedInstance(); if (allowDecimal) { String doubleString = Double.toString(simplifiedInstance.doubleValue()); if (doubleString.length() < 5) { return doubleString; } } return simplifiedInstance.toString(); } } /** * Decides whether a brute-force simplification calculation should be avoided * by comparing the maximum number of possible calculations with some threshold. * @return true if the simplification should be performed, otherwise false */ private boolean tooComplexForSimplification() { double maxPossibleCalculations = (((double)(Math.min(denominator, numerator) - 1) / 5d) + 2); return maxPossibleCalculations > maxSimplificationCalculations; } /** * Compares two <code>Rational</code> instances, returning true if they are mathematically * equivalent. * @param obj the Rational to compare this instance to. * @return true if instances are mathematically equivalent, otherwise false. Will also * return false if <code>obj</code> is not an instance of <code>Rational</code>. */ public boolean equals(Object obj) { if (!(obj instanceof Rational)) { return false; } Rational that = (Rational)obj; return this.doubleValue() == that.doubleValue(); } /** * <p> * Simplifies the Rational number.</p> * <p> * Prime number series: 1, 2, 3, 5, 7, 9, 11, 13, 17</p> * <p> * To reduce a rational, need to see if both numerator and denominator are divisible * by a common factor. Using the prime number series in ascending order guarantees * the minimun number of checks required.</p> * <p> * However, generating the prime number series seems to be a hefty task. Perhaps * it's simpler to check if both d & n are divisible by all numbers from 2 -> * (Math.min(denominator, numerator) / 2). In doing this, one can check for 2 * and 5 once, then ignore all even numbers, and all numbers ending in 0 or 5. * This leaves four numbers from every ten to check.</p> * <p> * Therefore, the max number of pairs of modulus divisions required will be:</p> * <code><pre> * 4 Math.min(denominator, numerator) - 1 * -- * ------------------------------------ + 2 * 10 2 * * Math.min(denominator, numerator) - 1 * = ------------------------------------ + 2 * 5 * </pre></code> * @return a simplified instance, or if the Rational could not be simpliffied, * returns itself (unchanged) */ public Rational getSimplifiedInstance() { if (tooComplexForSimplification()) { return this; } for (int factor = 2; factor <= Math.min(denominator, numerator); factor++) { if ((factor % 2 == 0 && factor > 2) || (factor % 5 == 0 && factor > 5)) { continue; } if (denominator % factor == 0 && numerator % factor == 0) { // found a common factor return new Rational(numerator / factor, denominator / factor); } } return this; } }