Back to project page translationKeyboard.
The source code is released under:
GNU General Public License
If you think the Android project translationKeyboard listed in this page is inappropriate, such as containing malicious code/tools or violating the copyright, please email info at java2s dot com, thanks.
/* * Copyright (C) 2008 The Android Open Source Project *// w w w .j a v a 2s . c o m * Licensed under the Apache License, Version 2.0 (the "License"); you may not * use this file except in compliance with the License. You may obtain a copy of * the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations under * the License. */ package org.distantshoresmedia.translationkeyboard; import java.io.InputStream; import java.io.IOException; import java.nio.ByteBuffer; import java.nio.ByteOrder; import java.nio.channels.Channels; import java.util.Arrays; import android.content.Context; import android.util.Log; /** * Implements a static, compacted, binary dictionary of standard words. */ public class BinaryDictionary extends Dictionary { /** * There is difference between what java and native code can handle. * This value should only be used in BinaryDictionary.java * It is necessary to keep it at this value because some languages e.g. German have * really long words. */ protected static final int MAX_WORD_LENGTH = 48; private static final String TAG = "BinaryDictionary"; private static final int MAX_ALTERNATIVES = 16; private static final int MAX_WORDS = 18; private static final int MAX_BIGRAMS = 60; private static final int TYPED_LETTER_MULTIPLIER = 2; private static final boolean ENABLE_MISSED_CHARACTERS = true; private int mDicTypeId; private int mNativeDict; private int mDictLength; private int[] mInputCodes = new int[MAX_WORD_LENGTH * MAX_ALTERNATIVES]; private char[] mOutputChars = new char[MAX_WORD_LENGTH * MAX_WORDS]; private char[] mOutputChars_bigrams = new char[MAX_WORD_LENGTH * MAX_BIGRAMS]; private int[] mFrequencies = new int[MAX_WORDS]; private int[] mFrequencies_bigrams = new int[MAX_BIGRAMS]; // Keep a reference to the native dict direct buffer in Java to avoid // unexpected deallocation of the direct buffer. private ByteBuffer mNativeDictDirectBuffer; static { try { System.loadLibrary("jni_pckeyboard"); Log.i("PCKeyboard", "loaded jni_pckeyboard"); } catch (UnsatisfiedLinkError ule) { Log.e("BinaryDictionary", "Could not load native library jni_pckeyboard"); } } /** * Create a dictionary from a raw resource file * @param context application context for reading resources * @param resId the resource containing the raw binary dictionary */ public BinaryDictionary(Context context, int[] resId, int dicTypeId) { if (resId != null && resId.length > 0 && resId[0] != 0) { loadDictionary(context, resId); } mDicTypeId = dicTypeId; } /** * Create a dictionary from input streams * @param context application context for reading resources * @param streams the resource streams containing the raw binary dictionary */ public BinaryDictionary(Context context, InputStream[] streams, int dicTypeId) { if (streams != null && streams.length > 0) { loadDictionary(streams); } mDicTypeId = dicTypeId; } /** * Create a dictionary from a byte buffer. This is used for testing. * @param context application context for reading resources * @param byteBuffer a ByteBuffer containing the binary dictionary */ public BinaryDictionary(Context context, ByteBuffer byteBuffer, int dicTypeId) { if (byteBuffer != null) { if (byteBuffer.isDirect()) { mNativeDictDirectBuffer = byteBuffer; } else { mNativeDictDirectBuffer = ByteBuffer.allocateDirect(byteBuffer.capacity()); byteBuffer.rewind(); mNativeDictDirectBuffer.put(byteBuffer); } mDictLength = byteBuffer.capacity(); mNativeDict = openNative(mNativeDictDirectBuffer, TYPED_LETTER_MULTIPLIER, FULL_WORD_FREQ_MULTIPLIER, mDictLength); } mDicTypeId = dicTypeId; } private native int openNative(ByteBuffer bb, int typedLetterMultiplier, int fullWordMultiplier, int dictSize); private native void closeNative(int dict); private native boolean isValidWordNative(int nativeData, char[] word, int wordLength); private native int getSuggestionsNative(int dict, int[] inputCodes, int codesSize, char[] outputChars, int[] frequencies, int maxWordLength, int maxWords, int maxAlternatives, int skipPos, int[] nextLettersFrequencies, int nextLettersSize); private native int getBigramsNative(int dict, char[] prevWord, int prevWordLength, int[] inputCodes, int inputCodesLength, char[] outputChars, int[] frequencies, int maxWordLength, int maxBigrams, int maxAlternatives); private final void loadDictionary(InputStream[] is) { try { // merging separated dictionary into one if dictionary is separated int total = 0; for (int i = 0; i < is.length; i++) { total += is[i].available(); } mNativeDictDirectBuffer = ByteBuffer.allocateDirect(total).order(ByteOrder.nativeOrder()); int got = 0; for (int i = 0; i < is.length; i++) { got += Channels.newChannel(is[i]).read(mNativeDictDirectBuffer); } if (got != total) { Log.e(TAG, "Read " + got + " bytes, expected " + total); } else { mNativeDict = openNative(mNativeDictDirectBuffer, TYPED_LETTER_MULTIPLIER, FULL_WORD_FREQ_MULTIPLIER, total); mDictLength = total; } if (mDictLength > 10000) Log.i("PCKeyboard", "Loaded dictionary, len=" + mDictLength); } catch (IOException e) { Log.w(TAG, "No available memory for binary dictionary"); } catch (UnsatisfiedLinkError e) { Log.w(TAG, "Failed to load native dictionary", e); } finally { try { if (is != null) { for (int i = 0; i < is.length; i++) { is[i].close(); } } } catch (IOException e) { Log.w(TAG, "Failed to close input stream"); } } } private final void loadDictionary(Context context, int[] resId) { InputStream[] is = null; is = new InputStream[resId.length]; for (int i = 0; i < resId.length; i++) { is[i] = context.getResources().openRawResource(resId[i]); } loadDictionary(is); } @Override public void getBigrams(final WordComposer codes, final CharSequence previousWord, final WordCallback callback, int[] nextLettersFrequencies) { char[] chars = previousWord.toString().toCharArray(); Arrays.fill(mOutputChars_bigrams, (char) 0); Arrays.fill(mFrequencies_bigrams, 0); int codesSize = codes.size(); Arrays.fill(mInputCodes, -1); int[] alternatives = codes.getCodesAt(0); System.arraycopy(alternatives, 0, mInputCodes, 0, Math.min(alternatives.length, MAX_ALTERNATIVES)); int count = getBigramsNative(mNativeDict, chars, chars.length, mInputCodes, codesSize, mOutputChars_bigrams, mFrequencies_bigrams, MAX_WORD_LENGTH, MAX_BIGRAMS, MAX_ALTERNATIVES); for (int j = 0; j < count; j++) { if (mFrequencies_bigrams[j] < 1) break; int start = j * MAX_WORD_LENGTH; int len = 0; while (mOutputChars_bigrams[start + len] != 0) { len++; } if (len > 0) { callback.addWord(mOutputChars_bigrams, start, len, mFrequencies_bigrams[j], mDicTypeId, DataType.BIGRAM); } } } @Override public void getWords(final WordComposer codes, final WordCallback callback, int[] nextLettersFrequencies) { final int codesSize = codes.size(); // Won't deal with really long words. if (codesSize > MAX_WORD_LENGTH - 1) return; Arrays.fill(mInputCodes, -1); for (int i = 0; i < codesSize; i++) { int[] alternatives = codes.getCodesAt(i); System.arraycopy(alternatives, 0, mInputCodes, i * MAX_ALTERNATIVES, Math.min(alternatives.length, MAX_ALTERNATIVES)); } Arrays.fill(mOutputChars, (char) 0); Arrays.fill(mFrequencies, 0); if (mNativeDict == 0) return; int count = getSuggestionsNative(mNativeDict, mInputCodes, codesSize, mOutputChars, mFrequencies, MAX_WORD_LENGTH, MAX_WORDS, MAX_ALTERNATIVES, -1, nextLettersFrequencies, nextLettersFrequencies != null ? nextLettersFrequencies.length : 0); // If there aren't sufficient suggestions, search for words by allowing wild cards at // the different character positions. This feature is not ready for prime-time as we need // to figure out the best ranking for such words compared to proximity corrections and // completions. if (ENABLE_MISSED_CHARACTERS && count < 5) { for (int skip = 0; skip < codesSize; skip++) { int tempCount = getSuggestionsNative(mNativeDict, mInputCodes, codesSize, mOutputChars, mFrequencies, MAX_WORD_LENGTH, MAX_WORDS, MAX_ALTERNATIVES, skip, null, 0); count = Math.max(count, tempCount); if (tempCount > 0) break; } } for (int j = 0; j < count; j++) { if (mFrequencies[j] < 1) break; int start = j * MAX_WORD_LENGTH; int len = 0; while (mOutputChars[start + len] != 0) { len++; } if (len > 0) { callback.addWord(mOutputChars, start, len, mFrequencies[j], mDicTypeId, DataType.UNIGRAM); } } } @Override public boolean isValidWord(CharSequence word) { if (word == null || mNativeDict == 0) return false; char[] chars = word.toString().toCharArray(); return isValidWordNative(mNativeDict, chars, chars.length); } public int getSize() { return mDictLength; // This value is initialized on the call to openNative() } @Override public synchronized void close() { if (mNativeDict != 0) { closeNative(mNativeDict); mNativeDict = 0; } } @Override protected void finalize() throws Throwable { close(); super.finalize(); } }