Back to project page android-shape-imageview.
The source code is released under:
Apache License
If you think the Android project android-shape-imageview listed in this page is inappropriate, such as containing malicious code/tools or violating the copyright, please email info at java2s dot com, thanks.
package com.github.siyamed.shapeimageview.path.parser; //ww w . ja va2 s. c o m import android.graphics.Path; import android.graphics.RectF; import android.util.Log; class PathParser { private static final String TAG = SvgToPath.TAG; /* * This is where the hard-to-parse paths are handled. * Uppercase rules are absolute positions, lowercase are relative. * Types of path rules: * <p/> * <ol> * <li>M/m - (x y)+ - Move to (without drawing) * <li>Z/z - (no params) - Close path (back to starting point) * <li>L/l - (x y)+ - Line to * <li>H/h - x+ - Horizontal ine to * <li>V/v - y+ - Vertical line to * <li>C/c - (x1 y1 x2 y2 x y)+ - Cubic bezier to * <li>S/s - (x2 y2 x y)+ - Smooth cubic bezier to (shorthand that assumes the x2, y2 from previous C/S is the x1, y1 of this bezier) * <li>Q/q - (x1 y1 x y)+ - Quadratic bezier to * <li>T/t - (x y)+ - Smooth quadratic bezier to (assumes previous control point is "reflection" of last one w.r.t. to current point) * </ol> * <p/> * Numbers are separate by whitespace, comma or nothing at all (!) if they are self-delimiting, (ie. begin with a - sign) */ public static Path doPath(String s) { int n = s.length(); ParserHelper ph = new ParserHelper(s); ph.skipWhitespace(); Path p = new Path(); float lastX = 0; float lastY = 0; float lastX1 = 0; float lastY1 = 0; float contourInitialX = 0; float contourInitialY = 0; RectF r = new RectF(); char cmd = 'x'; while (ph.pos < n) { char next = s.charAt(ph.pos); if (!Character.isDigit(next) && !(next == '.') && !(next == '-')) { cmd = next; ph.advance(); } else if (cmd == 'M') { // implied command cmd = 'L'; } else if (cmd == 'm') { // implied command cmd = 'l'; } else { // implied command //ignore } p.computeBounds(r, true); // Log.d(TAG, " " + cmd + " " + r); // Util.debug("* Commands remaining: '" + path + "'."); boolean wasCurve = false; switch (cmd) { case 'M': case 'm': { float x = ph.nextFloat(); float y = ph.nextFloat(); if (cmd == 'm') { p.rMoveTo(x, y); lastX += x; lastY += y; } else { p.moveTo(x, y); lastX = x; lastY = y; } contourInitialX = lastX; contourInitialY = lastY; break; } case 'Z': case 'z': { /// p.lineTo(contourInitialX, contourInitialY); p.close(); lastX = contourInitialX; lastY = contourInitialY; break; } case 'L': case 'l': { float x = ph.nextFloat(); float y = ph.nextFloat(); if (cmd == 'l') { p.rLineTo(x, y); lastX += x; lastY += y; } else { p.lineTo(x, y); lastX = x; lastY = y; } break; } case 'H': case 'h': { float x = ph.nextFloat(); if (cmd == 'h') { p.rLineTo(x, 0); lastX += x; } else { p.lineTo(x, lastY); lastX = x; } break; } case 'V': case 'v': { float y = ph.nextFloat(); if (cmd == 'v') { p.rLineTo(0, y); lastY += y; } else { p.lineTo(lastX, y); lastY = y; } break; } case 'C': case 'c': { wasCurve = true; float x1 = ph.nextFloat(); float y1 = ph.nextFloat(); float x2 = ph.nextFloat(); float y2 = ph.nextFloat(); float x = ph.nextFloat(); float y = ph.nextFloat(); if (cmd == 'c') { x1 += lastX; x2 += lastX; x += lastX; y1 += lastY; y2 += lastY; y += lastY; } p.cubicTo(x1, y1, x2, y2, x, y); lastX1 = x2; lastY1 = y2; lastX = x; lastY = y; break; } case 'S': case 's': { wasCurve = true; float x2 = ph.nextFloat(); float y2 = ph.nextFloat(); float x = ph.nextFloat(); float y = ph.nextFloat(); if (cmd == 's') { x2 += lastX; x += lastX; y2 += lastY; y += lastY; } float x1 = 2 * lastX - lastX1; float y1 = 2 * lastY - lastY1; p.cubicTo(x1, y1, x2, y2, x, y); lastX1 = x2; lastY1 = y2; lastX = x; lastY = y; break; } case 'A': case 'a': { float rx = ph.nextFloat(); float ry = ph.nextFloat(); float theta = ph.nextFloat(); int largeArc = (int) ph.nextFloat(); int sweepArc = (int) ph.nextFloat(); float x = ph.nextFloat(); float y = ph.nextFloat(); if (cmd == 'a') { x += lastX; y += lastY; } drawArc(p, lastX, lastY, x, y, rx, ry, theta, largeArc == 1, sweepArc == 1); lastX = x; lastY = y; break; } case 'T': case 't': { wasCurve = true; float x = ph.nextFloat(); float y = ph.nextFloat(); if (cmd == 't') { x += lastX; y += lastY; } float x1 = 2 * lastX - lastX1; float y1 = 2 * lastY - lastY1; p.cubicTo( lastX, lastY, x1, y1, x, y ); lastX = x; lastY = y; lastX1 = x1; lastY1 = y1; break; } case 'Q': case 'q': { wasCurve = true; float x1 = ph.nextFloat(); float y1 = ph.nextFloat(); float x = ph.nextFloat(); float y = ph.nextFloat(); if (cmd == 'q') { x += lastX; y += lastY; x1 += lastX; y1 += lastY; } p.cubicTo( lastX, lastY, x1, y1, x, y ); lastX1 = x1; lastY1 = y1; lastX = x; lastY = y; break; } default: Log.w(TAG, "Invalid path command: " + cmd); ph.advance(); } if (!wasCurve) { lastX1 = lastX; lastY1 = lastY; } ph.skipWhitespace(); } return p; } /* * Elliptical arc implementation based on the SVG specification notes * Adapted from the Batik library (Apache-2 license) by SAU */ private static void drawArc(Path path, double x0, double y0, double x, double y, double rx, double ry, double angle, boolean largeArcFlag, boolean sweepFlag) { double dx2 = (x0 - x) / 2.0; double dy2 = (y0 - y) / 2.0; angle = Math.toRadians(angle % 360.0); double cosAngle = Math.cos(angle); double sinAngle = Math.sin(angle); double x1 = (cosAngle * dx2 + sinAngle * dy2); double y1 = (-sinAngle * dx2 + cosAngle * dy2); rx = Math.abs(rx); ry = Math.abs(ry); double Prx = rx * rx; double Pry = ry * ry; double Px1 = x1 * x1; double Py1 = y1 * y1; // check that radii are large enough double radiiCheck = Px1 / Prx + Py1 / Pry; if (radiiCheck > 1) { rx = Math.sqrt(radiiCheck) * rx; ry = Math.sqrt(radiiCheck) * ry; Prx = rx * rx; Pry = ry * ry; } // Step 2 : Compute (cx1, cy1) double sign = (largeArcFlag == sweepFlag) ? -1 : 1; double sq = ((Prx * Pry) - (Prx * Py1) - (Pry * Px1)) / ((Prx * Py1) + (Pry * Px1)); sq = (sq < 0) ? 0 : sq; double coef = (sign * Math.sqrt(sq)); double cx1 = coef * ((rx * y1) / ry); double cy1 = coef * -((ry * x1) / rx); double sx2 = (x0 + x) / 2.0; double sy2 = (y0 + y) / 2.0; double cx = sx2 + (cosAngle * cx1 - sinAngle * cy1); double cy = sy2 + (sinAngle * cx1 + cosAngle * cy1); // Step 4 : Compute the angleStart (angle1) and the angleExtent (dangle) double ux = (x1 - cx1) / rx; double uy = (y1 - cy1) / ry; double vx = (-x1 - cx1) / rx; double vy = (-y1 - cy1) / ry; double p, n; // Compute the angle start n = Math.sqrt((ux * ux) + (uy * uy)); p = ux; // (1 * ux) + (0 * uy) sign = (uy < 0) ? -1.0 : 1.0; double angleStart = Math.toDegrees(sign * Math.acos(p / n)); // Compute the angle extent n = Math.sqrt((ux * ux + uy * uy) * (vx * vx + vy * vy)); p = ux * vx + uy * vy; sign = (ux * vy - uy * vx < 0) ? -1.0 : 1.0; double angleExtent = Math.toDegrees(sign * Math.acos(p / n)); if (!sweepFlag && angleExtent > 0) { angleExtent -= 360f; } else if (sweepFlag && angleExtent < 0) { angleExtent += 360f; } angleExtent %= 360f; angleStart %= 360f; RectF oval = new RectF((float) (cx - rx), (float) (cy - ry), (float) (cx + rx), (float) (cy + ry)); path.addArc(oval, (float) angleStart, (float) angleExtent); } }