GROUP value and count : Group « Select Clause « SQL / MySQL






GROUP value and count

   
/*
mysql> select * from employee_person;
+----+-------------------------------------+---------+---------------------------+------------+------+----------+-----------------+----------+
| id | address                             | phone   | email | birthday   | sex  | m_status | s_name          | children |
+----+-------------------------------------+---------+---------------------------+------------+------+----------+-----------------+----------+
|  1 | 200, Regina Street                  | 7176666 | net@hotmail.com | 1971-04-26 | M    | Y        | Ane Regina      |     NULL |
|  2 | 1232 Alberta Road                   | 5553312 | jo@hotmail.com | 1968-03-02 | M    | Y        | Jane Van        |        3 |
|  3 | 90 Potter A                         | 3331211 | gp@ymail.com | 1967-09-22 | M    | N        | Sandhya Pil     |        2 |
|  4 | 202, Donna Street                   | 7176167 | twink@hotmail.com | 1976-08-09 | F    | Y        | Manish Sha      |     NULL |
|  5 | Apartment #8, UBC, Van Street       | 8973242 | holy@ymail.com | 1974-10-14 | F    | N        | NULL            |     NULL |
|  6 | 46 SFU Street                       | 6451234 | kill@el.com | 1978-12-31 | M    | N        | NULL            |     NULL |
|  7 | 432 Mercury Ave                     | 7932232 | mac@hotmail.com | 1966-08-21 | M    | Y        | Mary Shelly     |        3 |
|  8 | 8 Little YaleTown                   | 5442994 | edd@gmail.com | 1975-01-14 | M    | N        | NULL            |     NULL |
|  9 | 64 Temp Road                        | 4327652 | nan@pmail.com | 1969-05-19 | M    | Y        | Man Nanda       |        1 |
| 10 | 132 Metro House, Henry Street       | 5552376 | ra@hotmail.com | 1968-07-06 | M    | N        | NULL            |     NULL |
| 11 | 1 Grace Town, Van Avenue            | 5433879 | soundofsilence@boxer.net | 1957-11-04 | M    | Y        | Muriel Lovelace |        4 |
| 12 | 97 Oakland Road                     | 5423311 | kingarthur@roundtable.org | 1968-02-15 | M    | Y        | Rina Brighton   |        3 |
| 13 | 543 Applegate Lane                  | 3434343 | levy@cmail.com | 1968-09-03 | F    | Y        | Matt Shi        |        2 |
| 14 | 76 Fish Street                      | 7432433 | tink@email.com | 1965-04-28 | M    | N        | NULL            |     NULL |
| 15 | 98 Gun Street                       | 6500787 | danny@fhardy.com | 1966-06-23 | M    | Y        | Betty Cudly     |        3 |
| 16 | #5 Winnepag Homes                   | 5433243 | mike@cmail.com | 1964-03-06 | M    | Y        | Stella Stevens  |        2 |
| 17 | 652 Devon Building, 6th Jade Avenue | 5537885 | mona@darling.com | 1970-04-18 | F    | Y        | Edgar Alan      |        1 |
| 18 | Apartment #9, Together Towers       | 5476565 | odessey@hotmail.com | 1973-10-09 | M    | N        | NULL            |     NULL |
| 19 | Apartment #9, West Towers           | 5476565 | jire@hotmail.com | 1973-01-20 | M    | N        | NULL            |     NULL |
| 20 | 90 Yale Town                        | 7528326 | help@more.org | 1968-01-25 | F    | N        | NULL            |     NULL |
| 21 | 4329 Eucalyptus Avenue              | 4254863 | money@cold.com | 1964-06-13 | M    | Y        | Ruby Richer     |        2 |
+----+-------------------------------------+---------+---------------------------+------------+------+----------+-----------------+----------+
21 rows in set (0.01 sec)

mysql> select sex, count(*)
    ->        from employee_person
    ->        GROUP BY sex;
+------+----------+
| sex  | count(*) |
+------+----------+
| M    |       16 |
| F    |        5 |
+------+----------+
2 rows in set (0.00 sec)


*/       
Drop table employee_person;

CREATE TABLE employee_person (
    id int unsigned not null primary key, 
    address varchar(60), 
    phone int, 
    email varchar(60), 
    birthday DATE, 
    sex ENUM('M', 'F'), 
    m_status ENUM('Y','N'), 
    s_name varchar(40), 
    children int
);


INSERT INTO employee_person (id, address, phone, email, birthday, sex, m_status, s_name) values (1, '200, Regina Street', 7176666, 'net@hotmail.com', '1971-04-26', 'M', 'Y', 'Ane Regina');
INSERT INTO employee_person (id, address, phone, email, birthday, sex, m_status, s_name, children) values (2, '1232 Alberta Road', 5553312, 'jo@hotmail.com', '1968-03-02', 'M', 'Y', 'Jane Van', 3);
INSERT INTO employee_person (id, address, phone, email, birthday, sex, m_status, s_name, children) values (3, '90 Potter A', 3331211, 'gp@ymail.com', '1967-09-22', 'M', 'N', 'Sandhya Pil', 2);
INSERT INTO employee_person (id, address, phone, email, birthday, sex, m_status, s_name) values (4, '202, Donna Street', 7176167, 'twink@hotmail.com', '1976-08-09', 'F', 'Y', 'Manish Sha');
INSERT INTO employee_person (id, address, phone, email, birthday, sex, m_status) values (5, 'Apartment #8, UBC, Van Street', 8973242, 'holy@ymail.com', '1974-10-14', 'F', 'N');
INSERT INTO employee_person (id, address, phone, email, birthday, sex, m_status) values (6, '46 SFU Street', '6451234', 'kill@el.com', '1978-12-31', 'M', 'N');
INSERT INTO employee_person (id, address, phone, email, birthday, sex, m_status, s_name, children) values (7, '432 Mercury Ave', 7932232, 'mac@hotmail.com', '1966-8-21', 'M', 'Y', 'Mary Shelly', '3');
INSERT INTO employee_person (id, address, phone, email, birthday, sex, m_status) values (8, '8 Little YaleTown', 5442994, 'edd@gmail.com', '1975-01-14', 'M', 'N');
INSERT INTO employee_person (id, address, phone, email, birthday, sex, m_status, s_name, children) values (9, '64 Temp Road', 4327652, 'nan@pmail.com', '1969-05-19', 'M', 'Y', 'Man Nanda', '1');
INSERT INTO employee_person (id, address, phone, email, birthday, sex, m_status) values (10, '132 Metro House, Henry Street', 5552376, 'ra@hotmail.com', '1968-07-06', 'M', 'N');
INSERT INTO employee_person (id, address, phone, email, birthday, sex, m_status, s_name, children) values (11, '1 Grace Town, Van Avenue', 5433879, 'soundofsilence@boxer.net', '1957-11-04', 'M', 'Y', 'Muriel Lovelace', '4');
INSERT INTO employee_person (id, address, phone, email, birthday, sex, m_status, s_name, children) values (12, '97 Oakland Road', 5423311, 'kingarthur@roundtable.org', '1968-02-15', 'M', 'Y', 'Rina Brighton', 3);
INSERT INTO employee_person (id, address, phone, email, birthday, sex, m_status, s_name, children) values (13, '543 Applegate Lane', 3434343, 'levy@cmail.com', '1968-09-03', 'F', 'Y', 'Matt Shi', '2');
INSERT INTO employee_person (id, address, phone, email, birthday, sex, m_status) values (14, '76 Fish Street', 7432433, 'tink@email.com', '1965-04-28', 'M', 'N');
INSERT INTO employee_person (id, address, phone, email, birthday, sex, m_status, s_name, children) values (15, '98 Gun Street', 6500787, 'danny@fhardy.com', '1966-06-23', 'M', 'Y', 'Betty Cudly', 3);
INSERT INTO employee_person (id, address, phone, email, birthday, sex, m_status, s_name, children) values (16, '#5 Winnepag Homes', 5433243, 'mike@cmail.com', '1964-03-06', 'M', 'Y', 'Stella Stevens', 2);
INSERT INTO employee_person (id, address, phone, email, birthday, sex, m_status, s_name, children) values (17, '652 Devon Building, 6th Jade Avenue', 5537885, 'mona@darling.com', '1970-04-18', 'F', 'Y', 'Edgar Alan', 1);
INSERT INTO employee_person (id, address, phone, email, birthday, sex, m_status) values (18, 'Apartment #9, Together Towers', 5476565, 'odessey@hotmail.com', '1973-10-09', 'M', 'N');
INSERT INTO employee_person (id, address, phone, email, birthday, sex, m_status) values (19, 'Apartment #9, West Towers', 5476565, 'jire@hotmail.com', '1973-1-20', 'M', 'N');
INSERT INTO employee_person (id, address, phone, email, birthday, sex, m_status) values (20, '90 Yale Town', 7528326, 'help@more.org', '1968-01-25', 'F', 'N');
INSERT INTO employee_person (id, address, phone, email, birthday, sex, m_status, s_name, children) values (21, '4329 Eucalyptus Avenue', 4254863, 'money@cold.com', '1964-06-13', 'M', 'Y', 'Ruby Richer', 2);
  
select * from employee_person;  
  
select sex, count(*)
       from employee_person 
       GROUP BY sex;


           
         
    
    
  








Related examples in the same category

1.Use GROUP BY clause to list only the unique data
2.Another GROUP BY
3.Use GROUP BY
4.GROUP BY with order and HAVING
5.Use GROUP BY 2
6.Use GROUP BY and ORDER BY together
7.Get GROUP BY for COUNT
8.Simple GROUP BY
9.GROUP and sort the records
10.Grouping Data: Filtering Group Data
11.Grouping Data: 03 Using the HAVING Clause 1
12.Grouping Data: Using the HAVING Clause 1
13.Using math function in HAVING
14.GROUP and HAVING with sub query
15.Group by and order by for linked tables
16.Grouping by Expression Results
17.Give the expression an alias in the output column list and refer to the alias in the GROUP BY clause
18.Write the GROUP BY clause to refer to the output column position:
19.Group by multiple expressions if you like.
20.Group mail table records into categories of 100,000 bytes
21.Group by DAYOFWEEK( )
22.Working with Per-Group and Overall Summary Values Simultaneously
23.Finding Rows Containing Per-Group Minimum or Maximum Values
24.Maximum-per-group problem for this table
25.Another way to group statements is to turn off auto-commit mode explicitly.
26.To use a GROUP BY clause effectively, you should also include a select list element that contains a function t
27.Specifies two columns in the GROUP BY clause
28.Working with Grouped Data
29.Group by calculated value
30.Group value in subquery
31.Group by two columns
32.Group by then order by vs Group by only
33.GROUP BY for Several Columns
34.GROUP BY returns a final sum for the first column and supplementary partial sums for the second column.
35.Dividing a Summary into Subgroups
36.Use the name column to place the rows in groups, but the summary functions operate on the miles values:
37.Parentheses may be used to group alternations.
38.To be more specific and find out how many messages each sender sent from each host, use two grouping columns.
39.Categorize groups on a logarithmic scale.
40.Missing and non-missing counts can be determined for subgroups as well.
41.get the number of orders per customer
42.A less fine-grained summary can be obtained by using only the month values
43.Find out how many books you have per author, use this query
44.Ascertain the most common initial letter for state names like this: