Partitioning with PARTITION_BY : PARTITION « Analytical Functions « Oracle PL / SQL






Partitioning with PARTITION_BY

 


SQL>
SQL> -- create demo table
SQL> create table Employee(
  2    empno              Number(3)  NOT NULL, -- Employee ID
  3    ename              VARCHAR2(10 BYTE),   -- Employee Name
  4    hireDate          DATE,                -- Date Employee Hired
  5    orig_salary        Number(8,2),         -- Orignal Salary
  6    curr_salary        Number(8,2),         -- Current Salary
  7    region             VARCHAR2(1 BYTE)     -- Region where employeed
  8  )
  9  /

Table created.

SQL>
SQL>
SQL> -- prepare data for employee table
SQL> insert into Employee(empno,  ename,  hireDate,                   orig_salary, curr_salary, region)
  2                values(122,'Alison',to_date('19960321','YYYYMMDD'), 45000,       NULL,       'E')
  3  /

1 row created.

SQL> insert into Employee(empno,  ename,  hireDate,                       orig_salary, curr_salary, region)
  2                values(123, 'James',to_date('19781212','YYYYMMDD'), 23000,       32000,       'W')
  3  /

1 row created.

SQL> insert into Employee(empno,  ename,  hireDate,                       orig_salary, curr_salary, region)
  2                values(104,'Celia',to_date('19821024','YYYYMMDD'), NULL,       58000,        'E')
  3  /

1 row created.

SQL> insert into Employee(empno,  ename,  hireDate,                       orig_salary, curr_salary, region)
  2                values(105,'Robert',to_date('19840115','YYYYMMDD'), 31000,      NULL,        'W')
  3  /

1 row created.

SQL> insert into Employee(empno,  ename,  hireDate,                       orig_salary, curr_salary, region)
  2                values(116,'Linda', to_date('19870730','YYYYMMDD'), NULL,       53000,       'E')
  3  /

1 row created.

SQL> insert into Employee(empno,  ename,  hireDate,                       orig_salary, curr_salary, region)
  2                values(117,'David', to_date('19901231','YYYYMMDD'), 78000,       NULL,       'W')
  3  /

1 row created.

SQL> insert into Employee(empno,  ename,  hireDate,                       orig_salary, curr_salary, region)
  2                values(108,'Jode',  to_date('19960917','YYYYMMDD'), 21000,       29000,       'E')
  3  /

1 row created.

SQL>
SQL> -- display data in the table
SQL> select * from Employee
  2  /

     EMPNO ENAME      HIREDATE  ORIG_SALARY CURR_SALARY R
---------- ---------- --------- ----------- ----------- -
       122 Alison     21-MAR-96       45000             E
       123 James      12-DEC-78       23000       32000 W
       104 Celia      24-OCT-82                   58000 E
       105 Robert     15-JAN-84       31000             W
       116 Linda      30-JUL-87                   53000 E
       117 David      31-DEC-90       78000             W
       108 Jode       17-SEP-96       21000       29000 E

7 rows selected.

SQL>
SQL>
SQL>
SQL> --Partitioning with PARTITION_BY
SQL>
SQL>
SQL> SELECT empno, ename, region, curr_salary,
  2    RANK() OVER(PARTITION BY region ORDER BY curr_salary desc)
  3      rank
  4  FROM employee
  5  ORDER BY region;

     EMPNO ENAME      R CURR_SALARY       RANK
---------- ---------- - ----------- ----------
       122 Alison     E                      1
       104 Celia      E       58000          2
       116 Linda      E       53000          3
       108 Jode       E       29000          4
       105 Robert     W                      1
       117 David      W                      1
       123 James      W       32000          3

7 rows selected.

SQL>
SQL>
SQL>
SQL>
SQL>
SQL>
SQL> -- clean the table
SQL> drop table Employee;

Table dropped.

SQL>
SQL>
           
         
  








Related examples in the same category

1.partition clause
2.Use partitioning in the OVER clause of the aggregate-analytical function like this
3.PARTITION BY: divide the groups into subgroups
4.Count(*) over partition
5.Dense_rank over partition by
6.rank and dense_rank over partition
7.count(*) over partition by, order by and range unbounded preceding
8.dense_rank() over partition by, order by
9.Top with partition
10.Partition Window
11.PARTITION BY (JOB title) and right outer join
12.SPREADSHEET PARTITION BY
13.sum salary over PARTITION BY