Fast BufferedInputStream : BufferedInputStream « File Input Output « Java






Fast BufferedInputStream

 
/*
 * Copyright 1994-2006 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Sun designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Sun in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 */
//package xbird.util.io;

import java.io.FilterInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.util.concurrent.atomic.AtomicReferenceFieldUpdater;

/**
 * A <code>BufferedInputStream</code> adds
 * functionality to another input stream-namely,
 * the ability to buffer the input and to
 * support the <code>mark</code> and <code>reset</code>
 * methods. When  the <code>BufferedInputStream</code>
 * is created, an internal buffer array is
 * created. As bytes  from the stream are read
 * or skipped, the internal buffer is refilled
 * as necessary  from the contained input stream,
 * many bytes at a time. The <code>mark</code>
 * operation  remembers a point in the input
 * stream and the <code>reset</code> operation
 * causes all the  bytes read since the most
 * recent <code>mark</code> operation to be
 * reread before new bytes are  taken from
 * the contained input stream.
 *
 * @version 1.57, 06/07/06
 */
public final class FastBufferedInputStream extends FilterInputStream {

    private static int defaultBufferSize = 8192;

    /**
     * The internal buffer array where the data is stored. When necessary,
     * it may be replaced by another array of
     * a different size.
     */
    protected volatile byte buf[];

    /**
     * Atomic updater to provide compareAndSet for buf. This is
     * necessary because closes can be asynchronous. We use nullness
     * of buf[] as primary indicator that this stream is closed. (The
     * "in" field is also nulled out on close.)
     */
    private static final AtomicReferenceFieldUpdater<FastBufferedInputStream, byte[]> bufUpdater = AtomicReferenceFieldUpdater.newUpdater(FastBufferedInputStream.class, byte[].class, "buf");

    /**
     * The index one greater than the index of the last valid byte in 
     * the buffer. 
     * This value is always
     * in the range <code>0</code> through <code>buf.length</code>;
     * elements <code>buf[0]</code>  through <code>buf[count-1]
     * </code>contain buffered input data obtained
     * from the underlying  input stream.
     */
    protected int count;

    /**
     * The current position in the buffer. This is the index of the next 
     * character to be read from the <code>buf</code> array. 
     * <p>
     * This value is always in the range <code>0</code>
     * through <code>count</code>. If it is less
     * than <code>count</code>, then  <code>buf[pos]</code>
     * is the next byte to be supplied as input;
     * if it is equal to <code>count</code>, then
     * the  next <code>read</code> or <code>skip</code>
     * operation will require more bytes to be
     * read from the contained  input stream.
     *
     * @see     java.io.BufferedInputStream#buf
     */
    protected int pos;

    /**
     * The value of the <code>pos</code> field at the time the last 
     * <code>mark</code> method was called.
     * <p>
     * This value is always
     * in the range <code>-1</code> through <code>pos</code>.
     * If there is no marked position in  the input
     * stream, this field is <code>-1</code>. If
     * there is a marked position in the input
     * stream,  then <code>buf[markpos]</code>
     * is the first byte to be supplied as input
     * after a <code>reset</code> operation. If
     * <code>markpos</code> is not <code>-1</code>,
     * then all bytes from positions <code>buf[markpos]</code>
     * through  <code>buf[pos-1]</code> must remain
     * in the buffer array (though they may be
     * moved to  another place in the buffer array,
     * with suitable adjustments to the values
     * of <code>count</code>,  <code>pos</code>,
     * and <code>markpos</code>); they may not
     * be discarded unless and until the difference
     * between <code>pos</code> and <code>markpos</code>
     * exceeds <code>marklimit</code>.
     *
     * @see     java.io.BufferedInputStream#mark(int)
     * @see     java.io.BufferedInputStream#pos
     */
    protected int markpos = -1;

    /**
     * The maximum read ahead allowed after a call to the 
     * <code>mark</code> method before subsequent calls to the 
     * <code>reset</code> method fail. 
     * Whenever the difference between <code>pos</code>
     * and <code>markpos</code> exceeds <code>marklimit</code>,
     * then the  mark may be dropped by setting
     * <code>markpos</code> to <code>-1</code>.
     *
     * @see     java.io.BufferedInputStream#mark(int)
     * @see     java.io.BufferedInputStream#reset()
     */
    protected int marklimit;

    /**
     * Check to make sure that underlying input stream has not been
     * nulled out due to close; if not return it;
     */
    private InputStream getInIfOpen() throws IOException {
        InputStream input = in;
        if(input == null)
            throw new IOException("Stream closed");
        return input;
    }

    /**
     * Check to make sure that buffer has not been nulled out due to
     * close; if not return it;
     */
    private byte[] getBufIfOpen() throws IOException {
        byte[] buffer = buf;
        if(buffer == null)
            throw new IOException("Stream closed");
        return buffer;
    }

    /**
     * Creates a <code>BufferedInputStream</code>
     * and saves its  argument, the input stream
     * <code>in</code>, for later use. An internal
     * buffer array is created and  stored in <code>buf</code>.
     *
     * @param   in   the underlying input stream.
     */
    public FastBufferedInputStream(InputStream in) {
        this(in, defaultBufferSize);
    }

    /**
     * Creates a <code>BufferedInputStream</code>
     * with the specified buffer size,
     * and saves its  argument, the input stream
     * <code>in</code>, for later use.  An internal
     * buffer array of length  <code>size</code>
     * is created and stored in <code>buf</code>.
     *
     * @param   in     the underlying input stream.
     * @param   size   the buffer size.
     * @exception IllegalArgumentException if size <= 0.
     */
    public FastBufferedInputStream(InputStream in, int size) {
        super(in);
        if(size <= 0) {
            throw new IllegalArgumentException("Buffer size <= 0");
        }
        buf = new byte[size];
    }

    /**
     * Fills the buffer with more data, taking into account
     * shuffling and other tricks for dealing with marks.
     * Assumes that it is being called by a synchronized method.
     * This method also assumes that all data has already been read in,
     * hence pos > count.
     */
    private void fill() throws IOException {
        byte[] buffer = getBufIfOpen();
        if(markpos < 0)
            pos = 0; /* no mark: throw away the buffer */
        else if(pos >= buffer.length) /* no room left in buffer */
            if(markpos > 0) { /* can throw away early part of the buffer */
                int sz = pos - markpos;
                System.arraycopy(buffer, markpos, buffer, 0, sz);
                pos = sz;
                markpos = 0;
            } else if(buffer.length >= marklimit) {
                markpos = -1; /* buffer got too big, invalidate mark */
                pos = 0; /* drop buffer contents */
            } else { /* grow buffer */
                int nsz = pos * 2;
                if(nsz > marklimit)
                    nsz = marklimit;
                byte nbuf[] = new byte[nsz];
                System.arraycopy(buffer, 0, nbuf, 0, pos);
                if(!bufUpdater.compareAndSet(this, buffer, nbuf)) {
                    // Can't replace buf if there was an async close.
                    // Note: This would need to be changed if fill()
                    // is ever made accessible to multiple threads.
                    // But for now, the only way CAS can fail is via close.
                    // assert buf == null;
                    throw new IOException("Stream closed");
                }
                buffer = nbuf;
            }
        count = pos;
        int n = getInIfOpen().read(buffer, pos, buffer.length - pos);
        if(n > 0)
            count = n + pos;
    }

    /**
     * See
     * the general contract of the <code>read</code>
     * method of <code>InputStream</code>.
     *
     * @return     the next byte of data, or <code>-1</code> if the end of the
     *             stream is reached.
     * @exception  IOException  if this input stream has been closed by
     *        invoking its {@link #close()} method,
     *        or an I/O error occurs. 
     * @see        java.io.FilterInputStream#in
     */
    public int read() throws IOException {
        if(pos >= count) {
            fill();
            if(pos >= count)
                return -1;
        }
        return getBufIfOpen()[pos++] & 0xff;
    }

    /**
     * Read characters into a portion of an array, reading from the underlying
     * stream at most once if necessary.
     */
    private int read1(byte[] b, int off, int len) throws IOException {
        int avail = count - pos;
        if(avail <= 0) {
            /* If the requested length is at least as large as the buffer, and
               if there is no mark/reset activity, do not bother to copy the
               bytes into the local buffer.  In this way buffered streams will
               cascade harmlessly. */
            if(len >= getBufIfOpen().length && markpos < 0) {
                return getInIfOpen().read(b, off, len);
            }
            fill();
            avail = count - pos;
            if(avail <= 0)
                return -1;
        }
        int cnt = (avail < len) ? avail : len;
        System.arraycopy(getBufIfOpen(), pos, b, off, cnt);
        pos += cnt;
        return cnt;
    }

    /**
     * Reads bytes from this byte-input stream into the specified byte array,
     * starting at the given offset.
     *
     * <p> This method implements the general contract of the corresponding
     * <code>{@link InputStream#read(byte[], int, int) read}</code> method of
     * the <code>{@link InputStream}</code> class.  As an additional
     * convenience, it attempts to read as many bytes as possible by repeatedly
     * invoking the <code>read</code> method of the underlying stream.  This
     * iterated <code>read</code> continues until one of the following
     * conditions becomes true: <ul>
     *
     *   <li> The specified number of bytes have been read,
     *
     *   <li> The <code>read</code> method of the underlying stream returns
     *   <code>-1</code>, indicating end-of-file, or
     *
     *   <li> The <code>available</code> method of the underlying stream
     *   returns zero, indicating that further input requests would block.
     *
     * </ul> If the first <code>read</code> on the underlying stream returns
     * <code>-1</code> to indicate end-of-file then this method returns
     * <code>-1</code>.  Otherwise this method returns the number of bytes
     * actually read.
     *
     * <p> Subclasses of this class are encouraged, but not required, to
     * attempt to read as many bytes as possible in the same fashion.
     *
     * @param      b     destination buffer.
     * @param      off   offset at which to start storing bytes.
     * @param      len   maximum number of bytes to read.
     * @return     the number of bytes read, or <code>-1</code> if the end of
     *             the stream has been reached.
     * @exception  IOException  if this input stream has been closed by
     *        invoking its {@link #close()} method,
     *        or an I/O error occurs. 
     */
    public int read(byte b[], int off, int len) throws IOException {
        getBufIfOpen(); // Check for closed stream
        if((off | len | (off + len) | (b.length - (off + len))) < 0) {
            throw new IndexOutOfBoundsException();
        } else if(len == 0) {
            return 0;
        }

        int n = 0;
        for(;;) {
            int nread = read1(b, off + n, len - n);
            if(nread <= 0)
                return (n == 0) ? nread : n;
            n += nread;
            if(n >= len)
                return n;
            // if not closed but no bytes available, return
            InputStream input = in;
            if(input != null && input.available() <= 0)
                return n;
        }
    }

    /**
     * See the general contract of the <code>skip</code>
     * method of <code>InputStream</code>.
     *
     * @exception  IOException  if the stream does not support seek,
     *        or if this input stream has been closed by
     *        invoking its {@link #close()} method, or an
     *        I/O error occurs.
     */
    public long skip(long n) throws IOException {
        getBufIfOpen(); // Check for closed stream
        if(n <= 0) {
            return 0;
        }
        long avail = count - pos;

        if(avail <= 0) {
            // If no mark position set then don't keep in buffer
            if(markpos < 0)
                return getInIfOpen().skip(n);

            // Fill in buffer to save bytes for reset
            fill();
            avail = count - pos;
            if(avail <= 0)
                return 0;
        }

        long skipped = (avail < n) ? avail : n;
        pos += skipped;
        return skipped;
    }

    /**
     * Returns an estimate of the number of bytes that can be read (or
     * skipped over) from this input stream without blocking by the next
     * invocation of a method for this input stream. The next invocation might be
     * the same thread or another thread.  A single read or skip of this
     * many bytes will not block, but may read or skip fewer bytes.
     * <p>
     * This method returns the sum of the number of bytes remaining to be read in
     * the buffer (<code>count&nbsp;- pos</code>) and the result of calling the
     * {@link java.io.FilterInputStream#in in}.available().
     *
     * @return     an estimate of the number of bytes that can be read (or skipped
     *             over) from this input stream without blocking.
     * @exception  IOException  if this input stream has been closed by
     *                          invoking its {@link #close()} method,
     *                          or an I/O error occurs.
     */
    public int available() throws IOException {
        return getInIfOpen().available() + (count - pos);
    }

    /** 
     * See the general contract of the <code>mark</code>
     * method of <code>InputStream</code>.
     *
     * @param   readlimit   the maximum limit of bytes that can be read before
     *                      the mark position becomes invalid.
     * @see     java.io.BufferedInputStream#reset()
     */
    public void mark(int readlimit) {
        marklimit = readlimit;
        markpos = pos;
    }

    /**
     * See the general contract of the <code>reset</code>
     * method of <code>InputStream</code>.
     * <p>
     * If <code>markpos</code> is <code>-1</code>
     * (no mark has been set or the mark has been
     * invalidated), an <code>IOException</code>
     * is thrown. Otherwise, <code>pos</code> is
     * set equal to <code>markpos</code>.
     *
     * @exception  IOException  if this stream has not been marked or,
     *      if the mark has been invalidated, or the stream 
     *      has been closed by invoking its {@link #close()}
     *      method, or an I/O error occurs.
     * @see        java.io.BufferedInputStream#mark(int)
     */
    public void reset() throws IOException {
        getBufIfOpen(); // Cause exception if closed
        if(markpos < 0)
            throw new IOException("Resetting to invalid mark");
        pos = markpos;
    }

    /**
     * Tests if this input stream supports the <code>mark</code> 
     * and <code>reset</code> methods. The <code>markSupported</code> 
     * method of <code>BufferedInputStream</code> returns 
     * <code>true</code>. 
     *
     * @return  a <code>boolean</code> indicating if this stream type supports
     *          the <code>mark</code> and <code>reset</code> methods.
     * @see     java.io.InputStream#mark(int)
     * @see     java.io.InputStream#reset()
     */
    public boolean markSupported() {
        return true;
    }

    /**
     * Closes this input stream and releases any system resources 
     * associated with the stream. 
     * Once the stream has been closed, further read(), available(), reset(),
     * or skip() invocations will throw an IOException.
     * Closing a previously closed stream has no effect.
     *
     * @exception  IOException  if an I/O error occurs.
     */
    public void close() throws IOException {
        byte[] buffer;
        while((buffer = buf) != null) {
            if(bufUpdater.compareAndSet(this, buffer, null)) {
                InputStream input = in;
                in = null;
                if(input != null)
                    input.close();
                return;
            }
            // Else retry in case a new buf was CASed in fill()
        }
    }
}

   
  








Related examples in the same category

1.Create BufferedInputStream from FileInputStream
2.Read from file with BufferedInputStream
3.Read File in String Using Java BufferedInputStream Example
4.Read File Using Java BufferedInputStream Example
5.Use buffered streams to copy a file
6.Import a file of exported preference data.
7.Copy byte between BufferedInputStream and BufferedOutputStream