calculate the discrete uniform distribution : Distribution « Development Class « Java






calculate the discrete uniform distribution

 
import java.util.Random;


/**
 * BeehiveZ is a business process model and instance management system.
 * Copyright (C) 2011  
 * Institute of Information System and Engineering, School of Software, Tsinghua University,
 * Beijing, China
 *
 * Contact: jintao05@gmail.com 
 *
 * This program is a free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation with the version of 2.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */


/**
 * @author Tao Jin
 * 
 */

public class Util{

  // calculate the discrete uniform distribution
  // ret[0] stores the number user given
  // ret[1] stores the count of the corresponding number in ret[0] with the
  // same index
  // for some number, the count maybe 0.
  // the parameter validation must be finished in advance.
  public static long[][] getDiscreteUniformDistribution(int min, int max,
      long total) {
    Random rand = new Random(System.currentTimeMillis());
    int span = max - min + 1;
    long avg = total / span;
    long[][] ret = new long[2][span];

    if (avg >= 1) {
      long count = 0;
      for (int i = 0; i < span; i++) {
        ret[0][i] = min + i;
        ret[1][i] = avg;
        count += avg;
      }

      if (count < total) {
        avg = span / (total - count);
        int a = (int) avg;
        int k = 0;
        while (count < total) {
          int i = rand.nextInt(span);
          ret[1][a * k]++;
          k++;
          count++;
        }
      }
    } else {
      for (int i = 0; i < span; i++) {
        ret[0][i] = min + i;
      }
      long count = 0;
      avg = span / total;
      while (count < total) {
        long k = count * avg;
        int kk = (int) k;
        ret[1][kk] = 1;
        count++;
        // int i = rand.nextInt(span);
        // if (ret[1][i] == 0) {
        // ret[1][i] = 1;
        // count++;
        // }
      }
    }
    return ret;
  }


}

   
  








Related examples in the same category

1.Return a sample from the Gamma/Poission/Gaussian distribution, with parameter IA
2.calculate the binomial distribution