Jenkins Hash : Hash Code « Development Class « Java






Jenkins Hash

      
/*
 * @(#)$Id$
 *
 * Copyright 2006-2008 Makoto YUI
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 * 
 * Contributors:
 *     Makoto YUI - initial implementation
 */
//package xbird.util.hashes;

/**
 * Produces 32-bit hash for hash table lookup.
 *
 * <pre>
 * lookup3.c, by Bob Jenkins, May 2006, Public Domain.
 *
 * You can use this free for any purpose.  It's in the public domain.
 * It has no warranty.
 * </pre>
 *
 * @see <a href="http://burtleburtle.net/bob/c/lookup3.c">lookup3.c</a>
 * @see <a href="http://www.ddj.com/184410284">Hash Functions (and how this function compares to others such as CRC, MD?, etc</a>
 * @see <a href="http://burtleburtle.net/bob/hash/doobs.html">Has update on the Dr. Dobbs Article</a>
 */
public final class JenkinsHash {
    private static long INT_MASK = 0x00000000ffffffffL;
    private static long BYTE_MASK = 0x00000000000000ffL;

    public JenkinsHash() {}

    public static int hash32(final byte[] key, final int initval) {
        return hash32(key, key.length, initval);
    }

    /**
     * taken from  hashlittle() -- hash a variable-length key into a 32-bit value
     *
     * @param key the key (the unaligned variable-length array of bytes)
     * @param nbytes number of bytes to include in hash
     * @param initval can be any integer value
     * @return a 32-bit value.  Every bit of the key affects every bit of the
     * return value.  Two keys differing by one or two bits will have totally
     * different hash values.
     *
     * <p>The best hash table sizes are powers of 2.  There is no need to do mod
     * a prime (mod is sooo slow!).  If you need less than 32 bits, use a bitmask.
     * For example, if you need only 10 bits, do
     * <code>h = (h & hashmask(10));</code>
     * In which case, the hash table should have hashsize(10) elements.
     *
     * <p>If you are hashing n strings byte[][] k, do it like this:
     * for (int i = 0, h = 0; i < n; ++i) h = hash( k[i], h);
     *
     * <p>By Bob Jenkins, 2006.  bob_jenkins@burtleburtle.net.  You may use this
     * code any way you wish, private, educational, or commercial.  It's free.
     *
     * <p>Use for hash table lookup, or anything where one collision in 2^^32 is
     * acceptable.  Do NOT use for cryptographic purposes.
    */
    public static int hash32(final byte[] key, final int nbytes, final int initval) {
        int length = nbytes;
        long a, b, c; // We use longs because we don't have unsigned ints
        a = b = c = (0x00000000deadbeefL + length + initval) & INT_MASK;
        int offset = 0;
        for(; length > 12; offset += 12, length -= 12) {
            a = (a + (key[offset + 0] & BYTE_MASK)) & INT_MASK;
            a = (a + (((key[offset + 1] & BYTE_MASK) << 8) & INT_MASK)) & INT_MASK;
            a = (a + (((key[offset + 2] & BYTE_MASK) << 16) & INT_MASK)) & INT_MASK;
            a = (a + (((key[offset + 3] & BYTE_MASK) << 24) & INT_MASK)) & INT_MASK;
            b = (b + (key[offset + 4] & BYTE_MASK)) & INT_MASK;
            b = (b + (((key[offset + 5] & BYTE_MASK) << 8) & INT_MASK)) & INT_MASK;
            b = (b + (((key[offset + 6] & BYTE_MASK) << 16) & INT_MASK)) & INT_MASK;
            b = (b + (((key[offset + 7] & BYTE_MASK) << 24) & INT_MASK)) & INT_MASK;
            c = (c + (key[offset + 8] & BYTE_MASK)) & INT_MASK;
            c = (c + (((key[offset + 9] & BYTE_MASK) << 8) & INT_MASK)) & INT_MASK;
            c = (c + (((key[offset + 10] & BYTE_MASK) << 16) & INT_MASK)) & INT_MASK;
            c = (c + (((key[offset + 11] & BYTE_MASK) << 24) & INT_MASK)) & INT_MASK;

            /*
             * mix -- mix 3 32-bit values reversibly.
             * This is reversible, so any information in (a,b,c) before mix() is
             * still in (a,b,c) after mix().
             *
             * If four pairs of (a,b,c) inputs are run through mix(), or through
             * mix() in reverse, there are at least 32 bits of the output that
             * are sometimes the same for one pair and different for another pair.
             *
             * This was tested for:
             * - pairs that differed by one bit, by two bits, in any combination
             *   of top bits of (a,b,c), or in any combination of bottom bits of
             *   (a,b,c).
             * - "differ" is defined as +, -, ^, or ~^.  For + and -, I transformed
             *   the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
             *    is commonly produced by subtraction) look like a single 1-bit
             *    difference.
             * - the base values were pseudorandom, all zero but one bit set, or
             *   all zero plus a counter that starts at zero.
             *
             * Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
             * satisfy this are
             *     4  6  8 16 19  4
             *     9 15  3 18 27 15
             *    14  9  3  7 17  3
             * Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing for
             * "differ" defined as + with a one-bit base and a two-bit delta.  I
             * used http://burtleburtle.net/bob/hash/avalanche.html to choose
             * the operations, constants, and arrangements of the variables.
             *
             * This does not achieve avalanche.  There are input bits of (a,b,c)
             * that fail to affect some output bits of (a,b,c), especially of a.
             * The most thoroughly mixed value is c, but it doesn't really even
             * achieve avalanche in c.
             *
             * This allows some parallelism.  Read-after-writes are good at doubling
             * the number of bits affected, so the goal of mixing pulls in the
             * opposite direction as the goal of parallelism.  I did what I could.
             * Rotates seem to cost as much as shifts on every machine I could lay
             * my hands on, and rotates are much kinder to the top and bottom bits,
             * so I used rotates.
             *
             * #define mix(a,b,c) \
             * { \
             *   a -= c;  a ^= rot(c, 4);  c += b; \
             *   b -= a;  b ^= rot(a, 6);  a += c; \
             *   c -= b;  c ^= rot(b, 8);  b += a; \
             *   a -= c;  a ^= rot(c,16);  c += b; \
             *   b -= a;  b ^= rot(a,19);  a += c; \
             *   c -= b;  c ^= rot(b, 4);  b += a; \
             * }
             *
             * mix(a,b,c);
             */
            a = (a - c) & INT_MASK;
            a ^= rot(c, 4);
            c = (c + b) & INT_MASK;
            b = (b - a) & INT_MASK;
            b ^= rot(a, 6);
            a = (a + c) & INT_MASK;
            c = (c - b) & INT_MASK;
            c ^= rot(b, 8);
            b = (b + a) & INT_MASK;
            a = (a - c) & INT_MASK;
            a ^= rot(c, 16);
            c = (c + b) & INT_MASK;
            b = (b - a) & INT_MASK;
            b ^= rot(a, 19);
            a = (a + c) & INT_MASK;
            c = (c - b) & INT_MASK;
            c ^= rot(b, 4);
            b = (b + a) & INT_MASK;
        }

        //-------------------------------- last block: affect all 32 bits of (c)
        switch(length) { // all the case statements fall through
            case 12:
                c = (c + (((key[offset + 11] & BYTE_MASK) << 24) & INT_MASK)) & INT_MASK;
            case 11:
                c = (c + (((key[offset + 10] & BYTE_MASK) << 16) & INT_MASK)) & INT_MASK;
            case 10:
                c = (c + (((key[offset + 9] & BYTE_MASK) << 8) & INT_MASK)) & INT_MASK;
            case 9:
                c = (c + (key[offset + 8] & BYTE_MASK)) & INT_MASK;
            case 8:
                b = (b + (((key[offset + 7] & BYTE_MASK) << 24) & INT_MASK)) & INT_MASK;
            case 7:
                b = (b + (((key[offset + 6] & BYTE_MASK) << 16) & INT_MASK)) & INT_MASK;
            case 6:
                b = (b + (((key[offset + 5] & BYTE_MASK) << 8) & INT_MASK)) & INT_MASK;
            case 5:
                b = (b + (key[offset + 4] & BYTE_MASK)) & INT_MASK;
            case 4:
                a = (a + (((key[offset + 3] & BYTE_MASK) << 24) & INT_MASK)) & INT_MASK;
            case 3:
                a = (a + (((key[offset + 2] & BYTE_MASK) << 16) & INT_MASK)) & INT_MASK;
            case 2:
                a = (a + (((key[offset + 1] & BYTE_MASK) << 8) & INT_MASK)) & INT_MASK;
            case 1:
                a = (a + (key[offset + 0] & BYTE_MASK)) & INT_MASK;
                break;
            case 0:
                return (int) (c & INT_MASK);
        }
        /*
         * final -- final mixing of 3 32-bit values (a,b,c) into c
         *
         * Pairs of (a,b,c) values differing in only a few bits will usually
         * produce values of c that look totally different.  This was tested for
         * - pairs that differed by one bit, by two bits, in any combination
         *   of top bits of (a,b,c), or in any combination of bottom bits of
         *   (a,b,c).
         *
         * - "differ" is defined as +, -, ^, or ~^.  For + and -, I transformed
         *   the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
         *   is commonly produced by subtraction) look like a single 1-bit
         *   difference.
         *
         * - the base values were pseudorandom, all zero but one bit set, or
         *   all zero plus a counter that starts at zero.
         *
         * These constants passed:
         *   14 11 25 16 4 14 24
         *   12 14 25 16 4 14 24
         * and these came close:
         *    4  8 15 26 3 22 24
         *   10  8 15 26 3 22 24
         *   11  8 15 26 3 22 24
         *
         * #define final(a,b,c) \
         * {
         *   c ^= b; c -= rot(b,14); \
         *   a ^= c; a -= rot(c,11); \
         *   b ^= a; b -= rot(a,25); \
         *   c ^= b; c -= rot(b,16); \
         *   a ^= c; a -= rot(c,4);  \
         *   b ^= a; b -= rot(a,14); \
         *   c ^= b; c -= rot(b,24); \
         * }
         *
         */
        c ^= b;
        c = (c - rot(b, 14)) & INT_MASK;
        a ^= c;
        a = (a - rot(c, 11)) & INT_MASK;
        b ^= a;
        b = (b - rot(a, 25)) & INT_MASK;
        c ^= b;
        c = (c - rot(b, 16)) & INT_MASK;
        a ^= c;
        a = (a - rot(c, 4)) & INT_MASK;
        b ^= a;
        b = (b - rot(a, 14)) & INT_MASK;
        c ^= b;
        c = (c - rot(b, 24)) & INT_MASK;

        return (int) (c & INT_MASK);
    }

    private static long rot(final long val, final int pos) {
        return ((Integer.rotateLeft((int) (val & INT_MASK), pos)) & INT_MASK);
    }

    /*
     * --------------------------------------------------------------------
     * hash() -- hash a variable-length key into a 64-bit value k : the key (the
     * unaligned variable-length array of bytes) level : can be any 8-byte value
     * Returns a 64-bit value. Every bit of the key affects every bit of the
     * return value. No funnels. Every 1-bit and 2-bit delta achieves avalanche.
     * About 41+5len instructions.
     *
     * The best hash table sizes are powers of 2. There is no need to do mod a
     * prime (mod is sooo slow!). If you need less than 64 bits, use a bitmask.
     * For example, if you need only 10 bits, do h = (h & hashmask(10)); In
     * which case, the hash table should have hashsize(10) elements.
     *
     * If you are hashing n strings (ub1 **)k, do it like this: for (i=0, h=0;
     * i<n; ++i) h = hash( k[i], len[i], h);
     *
     * By Bob Jenkins, Jan 4 1997. bob_jenkins@burtleburtle.net. You may use
     * this code any way you wish, private, educational, or commercial, but I
     * would appreciate if you give me credit.
     *
     * See http://burtleburtle.net/bob/hash/evahash.html Use for hash table
     * lookup, or anything where one collision in 2^^64 is acceptable. Do NOT
     * use for cryptographic purposes.
     * --------------------------------------------------------------------
     */
    public static long hash64(final byte[] k, final long initval) {
        /* Set up the internal state */
        long a = initval;
        long b = initval;
        /* the golden ratio; an arbitrary value */
        long c = 0x9e3779b97f4a7c13L;
        int len = k.length;

        /*---------------------------------------- handle most of the key */
        int i = 0;
        while(len >= 24) {
            a += gatherLongLE(k, i);
            b += gatherLongLE(k, i + 8);
            c += gatherLongLE(k, i + 16);

            /* mix64(a, b, c); */
            a -= b;
            a -= c;
            a ^= (c >> 43);
            b -= c;
            b -= a;
            b ^= (a << 9);
            c -= a;
            c -= b;
            c ^= (b >> 8);
            a -= b;
            a -= c;
            a ^= (c >> 38);
            b -= c;
            b -= a;
            b ^= (a << 23);
            c -= a;
            c -= b;
            c ^= (b >> 5);
            a -= b;
            a -= c;
            a ^= (c >> 35);
            b -= c;
            b -= a;
            b ^= (a << 49);
            c -= a;
            c -= b;
            c ^= (b >> 11);
            a -= b;
            a -= c;
            a ^= (c >> 12);
            b -= c;
            b -= a;
            b ^= (a << 18);
            c -= a;
            c -= b;
            c ^= (b >> 22);
            /* mix64(a, b, c); */

            i += 24;
            len -= 24;
        }

        /*------------------------------------- handle the last 23 bytes */
        c += k.length;

        if(len > 0) {
            if(len >= 8) {
                a += gatherLongLE(k, i);
                if(len >= 16) {
                    b += gatherLongLE(k, i + 8);
                    // this is bit asymmetric; LSB is reserved for length (see
                    // above)
                    if(len > 16) {
                        c += (gatherPartialLongLE(k, i + 16, len - 16) << 8);
                    }
                } else if(len > 8) {
                    b += gatherPartialLongLE(k, i + 8, len - 8);
                }
            } else {
                a += gatherPartialLongLE(k, i, len);
            }
        }

        /* mix64(a, b, c); */
        a -= b;
        a -= c;
        a ^= (c >> 43);
        b -= c;
        b -= a;
        b ^= (a << 9);
        c -= a;
        c -= b;
        c ^= (b >> 8);
        a -= b;
        a -= c;
        a ^= (c >> 38);
        b -= c;
        b -= a;
        b ^= (a << 23);
        c -= a;
        c -= b;
        c ^= (b >> 5);
        a -= b;
        a -= c;
        a ^= (c >> 35);
        b -= c;
        b -= a;
        b ^= (a << 49);
        c -= a;
        c -= b;
        c ^= (b >> 11);
        a -= b;
        a -= c;
        a ^= (c >> 12);
        b -= c;
        b -= a;
        b ^= (a << 18);
        c -= a;
        c -= b;
        c ^= (b >> 22);
        /* mix64(a, b, c); */

        return c;
    }

    /** perform unsigned extension of int to long */
    private static final long uintToLong(final int i) {
        long l = (long) i;
        return (l << 32) >>> 32;
    }

    /** gather a long from the specified index into the byte array */
    private static final long gatherLongLE(final byte[] data, final int index) {
        int i1 = gatherIntLE(data, index);
        long l2 = gatherIntLE(data, index + 4);

        return uintToLong(i1) | (l2 << 32);
    }

    /**
     * gather a partial long from the specified index using the specified number
     * of bytes into the byte array
     */
    private static final long gatherPartialLongLE(final byte[] data, final int index, final int available) {
        if(available >= 4) {
            int i = gatherIntLE(data, index);
            long l = uintToLong(i);

            int left = available - 4;

            if(left == 0) {
                return l;
            }

            int i2 = gatherPartialIntLE(data, index + 4, left);

            l <<= (left << 3);
            l |= (long) i2;

            return l;
        } else {
            return (long) gatherPartialIntLE(data, index, available);
        }
    }

    /** gather an int from the specified index into the byte array */
    private static final int gatherIntLE(final byte[] data, final int index) {
        int i = data[index] & 0xFF;

        i |= (data[index + 1] & 0xFF) << 8;
        i |= (data[index + 2] & 0xFF) << 16;
        i |= (data[index + 3] << 24);

        return i;
    }

    /**
     * gather a partial int from the specified index using the specified number
     * of bytes into the byte array
     */
    private static final int gatherPartialIntLE(final byte[] data, final int index, final int available) {
        int i = data[index] & 0xFF;

        if(available > 1) {
            i |= (data[index + 1] & 0xFF) << 8;
            if(available > 2) {
                i |= (data[index + 2] & 0xFF) << 16;
            }
        }

        return i;
    }
}

   
    
    
    
    
    
  








Related examples in the same category

1.Computing hash codes
2.A hash-code generator and a collection of static hash-code generation methods.
3.MD5 hash generator
4.Hash 32 String
5.Hash 64 String
6.MD5 hashing: Encodes a string
7.MD5 String
8.Hash Code BuilderHash Code Builder
9.HashCode generationHashCode generation
10.Get hash code for primitive data types
11.Return as hash code for the given object
12.Null Safe Hash Code
13.A very efficient java hash algorithm, based on the BuzHash algoritm
14.Easy implementation of hashCode
15.An implementation of the HMACT64 keyed hashing algorithm
16.Gets the hash code of an object returning zero when the object is null
17.Unify Hash
18.Secure Hash
19.FNV Hash
20.Concurrent Cuckoo hashing using lock striping. Uses R/W locks for resizing. Exercise solution.
21.Concurrent Cuckoo hashing using lock striping.
22.encode Hex
23.Fowler/Noll/Vo hash algorhythm
24.Produces 32-bit hash for hash table lookup. (Jenkins Hash Function)
25.Key Value Hash
26.Paul Hsieh's Hash Function.
27.An extension of WeakReference that implements a sane equals and hashcode method.
28.Dual Key Hash Map
29.A hash map with int key and int values.
30.null Safe Equals and Hash
31.Generates a hash code for a given source code.
32.AtkinsonHash utility class implements the hash algorithm used by HyperCard's ask password command.
33.Hash Code AssistHash Code Assist
34.This is a very fast, non-cryptographic hash suitable for general hash-based lookup.
35.An advanced hash table supporting configurable garbage collection semantics of keys and values
36.Hash string