Find the index of the value nearest to the key.
import java.util.Arrays;
/**
* <p>Static methods for doing useful math</p><hr>
*
* @author : $Author: brian $
* @version : $Revision: 1.1 $
*
* <hr><p><font size="-1" color="#336699"><a href="http://www.mbari.org">
* The Monterey Bay Aquarium Research Institute (MBARI)</a> provides this
* documentation and code "as is", with no warranty, express or
* implied, of its quality or consistency. It is provided without support and
* without obligation on the part of MBARI to assist in its use, correction,
* modification, or enhancement. This information should not be published or
* distributed to third parties without specific written permission from
* MBARI.</font></p><br>
*
* <font size="-1" color="#336699">Copyright 2002 MBARI.<br>
* MBARI Proprietary Information. All rights reserved.</font><br><hr><br>
*
*/
public class Util{
/**
* Find the index of the value nearest to the key. The values array can
* contain only unique values. If it doesn't the first occurence of a value
* in the values array is the one used, subsequent duplicate are ignored.
*
* @param values Values to search through for the nearest point.
* @param key The key to search for the nearest neighbor in values.
* @return the index of the value nearest to the key.
* @since 20011207
*/
public static final int near(final double[] values, final double key) {
int n = binarySearch(values, key);
if (n < 0) {
// when n is an insertion point
n = (-n) - 1; // Convert n to an index
// If n == 0 we don't need to find nearest neighbor. If n is
// larger than the array, use the last point in the array.
if (n > values.length - 1) {
n = values.length - 1; // If key is larger than any value in values
}
else if (n > 0) {
// find nearest neighbor
double d1 = values[n - 1] - key;
double d2 = values[n] - key;
if (d1 <= d2) {
n = n - 1;
}
}
}
return n;
}
/**
* Searches the specified array of doubles for the specified value using
* the binary search algorithm. The array <strong>must</strong> be sorted
* (as by the <tt>sort</tt> method, above) prior to making this call. If
* it is not sorted, the results are undefined. If the array contains
* multiple elements with the specified value, there is no guarantee which
* one will be found. The array can be sorted from low values to high or
* from high values to low.
*
* @param a the array to be searched.
* @param key the value to be searched for.
* @return index of the search key, if it is contained in the list;
* otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The
* <i>insertion point</i> is defined as the point at which the
* key would be inserted into the list: the index of the first
* element greater than the key, or <tt>list.size()</tt>, if all
* elements in the list are less than the specified key. Note
* that this guarantees that the return value will be >= 0 if
* and only if the key is found.
*/
public static int binarySearch(double[] a, double key) {
int index = -1;
if (a[0] < a[1]) {
index = Arrays.binarySearch(a, key);
}
else {
index = binarySearch(a, key, 0, a.length - 1);
}
return index;
}
private static int binarySearch(double[] a, double key, int low, int high) {
while (low <= high) {
int mid = (low + high) / 2;
double midVal = a[mid];
int cmp;
if (midVal > key) {
cmp = -1; // Neither val is NaN, thisVal is smaller
}
else if (midVal < key) {
cmp = 1; // Neither val is NaN, thisVal is larger
}
else {
long midBits = Double.doubleToLongBits(midVal);
long keyBits = Double.doubleToLongBits(key);
cmp = (midBits == keyBits ? 0 : (midBits < keyBits ? -1 : 1)); // (0.0, -0.0) or (NaN, !NaN)
}
if (cmp < 0) {
low = mid + 1;
}
else if (cmp > 0) {
high = mid - 1;
}
else {
return mid; // key found
}
}
return -(low + 1); // key not found.
}
}
Related examples in the same category