Find optimal solution using least-cost : Algorithms « Collections Data Structure « Java






Find optimal solution using least-cost

 
/*
 * Chapter 10 - AI-Based Problem Solving The Art of Java by Herbert Schildt and
 * James Holmes McGraw-Hill/Osborne ? 2003
 */

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Stack;

// Flight information.
class FlightInfo {
  String from;

  String to;

  int distance;

  boolean skip; // used in backtracking

  FlightInfo(String f, String t, int d) {
    from = f;
    to = t;
    distance = d;
    skip = false;
  }
}

public class Optimal {
  final int MAX = 100;

  // This array holds the flight information.
  FlightInfo flights[] = new FlightInfo[MAX];

  int numFlights = 0; // number of entries in flight array

  Stack btStack = new Stack(); // backtrack stack

  Stack optimal; // holds optimal solution

  int minDist = 10000;

  public static void main(String args[]) {
    String to, from;
    Optimal ob = new Optimal();
    BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
    boolean done = false;
    FlightInfo f;

    ob.setup();

    try {
      System.out.print("From? ");
      from = br.readLine();
      System.out.print("To? ");
      to = br.readLine();
      do {
        ob.isflight(from, to);

        if (ob.btStack.size() == 0)
          done = true;
        else {
          ob.route(to);
          ob.btStack = new Stack();
        }
      } while (!done);

      // Display optimal solution.
      if (ob.optimal != null) {
        System.out.println("Optimal solution is: ");

        int num = ob.optimal.size();
        for (int i = 0; i < num; i++) {
          f = (FlightInfo) ob.optimal.pop();
          System.out.print(f.from + " to ");
        }

        System.out.println(to);
        System.out.println("Distance is " + ob.minDist);
      }
    } catch (IOException exc) {
      System.out.println("Error on input.");
    }
  }

  // Initialize the flight database.
  void setup() {
    addFlight("New York", "Chicago", 900);
    addFlight("Chicago", "Denver", 1000);
    addFlight("New York", "Toronto", 500);
    addFlight("New York", "Denver", 1800);
    addFlight("Toronto", "Calgary", 1700);
    addFlight("Toronto", "Los Angeles", 2500);
    addFlight("Toronto", "Chicago", 500);
    addFlight("Denver", "Urbana", 1000);
    addFlight("Denver", "Houston", 1000);
    addFlight("Houston", "Los Angeles", 1500);
    addFlight("Denver", "Los Angeles", 1000);
  }

  // Put flights into the database.
  void addFlight(String from, String to, int dist) {
    if (numFlights < MAX) {
      flights[numFlights] = new FlightInfo(from, to, dist);

      numFlights++;
    } else
      System.out.println("Flight database full.\n");
  }

  // Save shortest route.
  void route(String to) {
    int dist = 0;
    FlightInfo f;
    int num = btStack.size();
    Stack optTemp = new Stack();

    for (int i = 0; i < num; i++) {
      f = (FlightInfo) btStack.pop();
      optTemp.push(f); // save route
      dist += f.distance;
    }

    // If shorter, keep this route
    if (minDist > dist) {
      optimal = optTemp;
      minDist = dist;
    }
  }

  /*
   * If there is a flight between from and to, return the distance of flight;
   * otherwise, return 0.
   */
  int match(String from, String to) {
    for (int i = numFlights - 1; i > -1; i--) {
      if (flights[i].from.equals(from) && flights[i].to.equals(to)
          && !flights[i].skip) {
        flights[i].skip = true; // prevent reuse
        return flights[i].distance;
      }
    }

    return 0; // not found
  }

  // Given from, find any connection using least-cost.
  FlightInfo find(String from) {
    int pos = -1;
    int dist = 10000; // longer than longest route

    for (int i = 0; i < numFlights; i++) {
      if (flights[i].from.equals(from) && !flights[i].skip) {
        // Use the shortest flight.
        if (flights[i].distance < dist) {
          pos = i;
          dist = flights[i].distance;
        }
      }
    }

    if (pos != -1) {
      flights[pos].skip = true; // prevent reuse
      FlightInfo f = new FlightInfo(flights[pos].from, flights[pos].to,
          flights[pos].distance);
      return f;
    }

    return null;
  }

  // Determine if there is a route between from and to.
  void isflight(String from, String to) {
    int dist;
    FlightInfo f;
    // See if at destination.
    dist = match(from, to);
    if (dist != 0) {
      btStack.push(new FlightInfo(from, to, dist));
      return;
    }

    // Try another connection.
    f = find(from);
    if (f != null) {
      btStack.push(new FlightInfo(from, to, f.distance));
      isflight(f.to, to);
    } else if (btStack.size() > 0) {
      // Backtrack and try another connection.
      f = (FlightInfo) btStack.pop();
      isflight(f.from, f.to);
    }
  }
}

           
         
  








Related examples in the same category

1.AnagramsAnagrams
2.Hanoi puzzleHanoi puzzle
3.FibonacciFibonacci
4.Sieve Sieve
5.Find connections using a depth-first searchFind connections using a depth-first search
6.Find connections using hill climbing.
7.Find the lost keysFind the lost keys
8.Compute the area of a triangle using Heron's FormulaCompute the area of a triangle using Heron's Formula
9.Compute prime numbers
10.Print a table of fahrenheit and celsius temperatures 1
11.Print a table of fahrenheit and celsius temperatures 2
12.Print a table of Fahrenheit and Celsius temperatures 3Print a table of Fahrenheit and Celsius temperatures 3
13.Soundex - the Soundex Algorithm, as described by KnuthSoundex - the Soundex Algorithm, as described by Knuth
14.A programmable Finite State Machine implementation.
15.An extendable Graph datastructure.
16.Utilities for flop (floating-point operation) counting.
17.LU Decomposition
18.Reverse Polish Notation
19.Permutator test
20.implements the LZF lossless data compression algorithm
21.Linear Interpolation
22.Utility class for generating the k-subsets of the numbers 0 to n
23.VersionVersion