Spline 2D : Curve « 2D Graphics GUI « Java






Spline 2D

   
/*
 * @(#)Spline2D.java
 * 
 * Copyright (c) 2003 Martin Krueger
 * Copyright (c) 2005 David Benson
 *  
 */

import java.awt.geom.Point2D;
import java.util.Arrays;

/**
 * Interpolates points given in the 2D plane. The resulting spline
 * is a function s: R -> R^2 with parameter t in [0,1].
 * 
 * @author krueger
 */
public class Spline2D {

  /** 
   *  Array representing the relative proportion of the total distance
   *  of each point in the line ( i.e. first point is 0.0, end point is
   *  1.0, a point halfway on line is 0.5 ).
   */
  private double[] t;
  private Spline splineX;
  private Spline splineY;
  /**
   * Total length tracing the points on the spline
   */
  private double length;
  
  /**
   * Creates a new Spline2D.
   * @param points
   */
  public Spline2D(Point2D[] points) {
    double[] x = new double[points.length];
    double[] y = new double[points.length];
    
    for(int i = 0; i< points.length; i++) {
      x[i] = points[i].getX();
      y[i] = points[i].getY(); 
    }
    
    init(x, y);
  }

  /**
   * Creates a new Spline2D.
   * @param x
   * @param y
   */
  public Spline2D(double[] x, double[] y) {
    init(x, y);
  }

  private void init(double[] x, double[] y) {
    if (x.length != y.length) {
      throw new IllegalArgumentException("Arrays must have the same length.");
    }
    
    if (x.length < 2) {
      throw new IllegalArgumentException("Spline edges must have at least two points.");
    }

    t = new double[x.length];
    t[0] = 0.0; // start point is always 0.0
    
    // Calculate the partial proportions of each section between each set
    // of points and the total length of sum of all sections
    for (int i = 1; i < t.length; i++) {
      double lx = x[i] - x[i-1];
      double ly = y[i] - y[i-1];
      // If either diff is zero there is no point performing the square root
      if ( 0.0 == lx ) {
        t[i] = Math.abs(ly);
      } else if ( 0.0 == ly ) {
        t[i] = Math.abs(lx);
      } else {
        t[i] = Math.sqrt(lx*lx+ly*ly);
      }
      
      length += t[i];
      t[i] += t[i-1];
    }
    
    for(int i = 1; i< (t.length)-1; i++) {
      t[i] = t[i] / length;
    }
    
    t[(t.length)-1] = 1.0; // end point is always 1.0
    
    splineX = new Spline(t, x);
    splineY = new Spline(t, y);
  }

  /**
   * @param t 0 <= t <= 1
   */
  public double[] getPoint(double t) {
    double[] result = new double[2];
    result[0] = splineX.getValue(t);
    result[1] = splineY.getValue(t);

    return result;
  }
  
  /**
   * Used to check the correctness of this spline
   */
  public boolean checkValues() {
    return (splineX.checkValues() && splineY.checkValues());
  }

  public double getDx(double t) {
    return splineX.getDx(t);
  }
  
  public double getDy(double t) {
    return splineY.getDx(t);
  }
  
  public Spline getSplineX() {
    return splineX;
  }
  
  public Spline getSplineY() {
    return splineY;
  }
  
  public double getLength() {
    return length;
  }

}

/* This code is PUBLIC DOMAIN */


/**
 * Interpolates given values by B-Splines.
 * 
 * @author krueger
 */
 class Spline {

  private double[] xx;
  private double[] yy;

  private double[] a;
  private double[] b;
  private double[] c;
  private double[] d;

  /** tracks the last index found since that is mostly commonly the next one used */
  private int storageIndex = 0;

  /**
   * Creates a new Spline.
   * @param xx
   * @param yy
   */
  public Spline(double[] xx, double[] yy) {
    setValues(xx, yy);
  }

  /**
   * Set values for this Spline.
   * @param xx
   * @param yy
   */
  public void setValues(double[] xx, double[] yy) {
    this.xx = xx;
    this.yy = yy;
    if (xx.length > 1) {
      calculateCoefficients();
    }
  }

  /**
   * Returns an interpolated value.
   * @param x
   * @return the interpolated value
   */
  public double getValue(double x) {
    if (xx.length == 0) {
      return Double.NaN;
    }

    if (xx.length == 1) {
      if (xx[0] == x) {
        return yy[0];
      } else {
        return Double.NaN;
      }
    }

    int index = Arrays.binarySearch(xx, x);
    if (index > 0) {
      return yy[index];
    }

    index = - (index + 1) - 1;
    //TODO linear interpolation or extrapolation
    if (index < 0) {
      return yy[0];
    }

    return a[index]
      + b[index] * (x - xx[index])
      + c[index] * Math.pow(x - xx[index], 2)
      + d[index] * Math.pow(x - xx[index], 3);
  }

  /**
   * Returns an interpolated value. To be used when a long sequence of values
   * are required in order, but ensure checkValues() is called beforehand to
   * ensure the boundary checks from getValue() are made
   * @param x
   * @return the interpolated value
   */
  public double getFastValue(double x) {
    // Fast check to see if previous index is still valid
    if (storageIndex > -1 && storageIndex < xx.length-1 && x > xx[storageIndex] && x < xx[storageIndex + 1]) {

    } else {
      int index = Arrays.binarySearch(xx, x);
      if (index > 0) {
        return yy[index];
      }
      index = - (index + 1) - 1;
      storageIndex = index;
    }
  
    //TODO linear interpolation or extrapolation
    if (storageIndex < 0) {
      return yy[0];
    }
    double value = x - xx[storageIndex];
    return a[storageIndex]
          + b[storageIndex] * value
          + c[storageIndex] * (value * value)
          + d[storageIndex] * (value * value * value);
  }

  /**
   * Used to check the correctness of this spline
   */
  public boolean checkValues() {
    if (xx.length < 2) {
      return false;
    } else {
      return true;
    }
  }

  /**
   * Returns the first derivation at x.
   * @param x
   * @return the first derivation at x
   */
  public double getDx(double x) {
    if (xx.length == 0 || xx.length == 1) {
      return 0;
    }

    int index = Arrays.binarySearch(xx, x);
    if (index < 0) {
      index = - (index + 1) - 1;
    }

    return b[index]
      + 2 * c[index] * (x - xx[index])
      + 3 * d[index] * Math.pow(x - xx[index], 2);
  }

  /**
   * Calculates the Spline coefficients.
   */
  private void calculateCoefficients() {
    int N = yy.length;
    a = new double[N];
    b = new double[N];
    c = new double[N];
    d = new double[N];

    if (N == 2) {
      a[0] = yy[0];
      b[0] = yy[1] - yy[0];
      return;
    }

    double[] h = new double[N - 1];
    for (int i = 0; i < N - 1; i++) {
      a[i] = yy[i];
      h[i] = xx[i + 1] - xx[i];
      // h[i] is used for division later, avoid a NaN
      if (h[i] == 0.0) {
        h[i] = 0.01;
      }
    }
    a[N - 1] = yy[N - 1];

    double[][] A = new double[N - 2][N - 2];
    double[] y = new double[N - 2];
    for (int i = 0; i < N - 2; i++) {
      y[i] =
        3
          * ((yy[i + 2] - yy[i + 1]) / h[i
            + 1]
            - (yy[i + 1] - yy[i]) / h[i]);

      A[i][i] = 2 * (h[i] + h[i + 1]);

      if (i > 0) {
        A[i][i - 1] = h[i];
      }

      if (i < N - 3) {
        A[i][i + 1] = h[i + 1];
      }
    }
    solve(A, y);

    for (int i = 0; i < N - 2; i++) {
      c[i + 1] = y[i];
      b[i] = (a[i + 1] - a[i]) / h[i] - (2 * c[i] + c[i + 1]) / 3 * h[i];
      d[i] = (c[i + 1] - c[i]) / (3 * h[i]);
    }
    b[N - 2] =
      (a[N - 1] - a[N - 2]) / h[N
        - 2]
        - (2 * c[N - 2] + c[N - 1]) / 3 * h[N
        - 2];
    d[N - 2] = (c[N - 1] - c[N - 2]) / (3 * h[N - 2]);
  }

  /**
   * Solves Ax=b and stores the solution in b.
   */
  public void solve(double[][] A, double[] b) {
    int n = b.length;
    for (int i = 1; i < n; i++) {
      A[i][i - 1] = A[i][i - 1] / A[i - 1][i - 1];
      A[i][i] = A[i][i] - A[i - 1][i] * A[i][i - 1];
      b[i] = b[i] - A[i][i - 1] * b[i - 1];
    }

    b[n - 1] = b[n - 1] / A[n - 1][n - 1];
    for (int i = b.length - 2; i >= 0; i--) {
      b[i] = (b[i] - A[i][i + 1] * b[i + 1]) / A[i][i];
    }
  }
}

   
    
    
  








Related examples in the same category

1.Move the curve control point and redraw the curve
2.Draw curve with mouseDraw curve with mouse
3.Curve with QuadCurve2DCurve with QuadCurve2D
4.A spline factory instance
5.Interpolates given points by a bezier curve
6.A class that models a Cubic-Bezier curve