Performs a jpeg compression of an image : JPEG « 2D Graphics GUI « Java






Performs a jpeg compression of an image

    
// Copyright (C) 1998, James R. Weeks and BioElectroMech.
// Visit BioElectroMech at www.obrador.com.  Email James@obrador.com.

// This software is based in part on the work of the Independent JPEG Group.
// See license.txt for details about the allowed used of this software.
// See IJGreadme.txt for details about the Independent JPEG Group's license.

import java.awt.AWTException;
import java.awt.Frame;
import java.awt.Image;
import java.awt.MediaTracker;
import java.awt.Toolkit;
import java.awt.image.PixelGrabber;
import java.io.BufferedOutputStream;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.OutputStream;
import java.util.Vector;

public class Jpeg {
  /** ************ Main Method *************** */
  /*****************************************************************************
   * Jpeg("Imagefile", Quality, "OutFileName") According to JAVA virtual
   * machine, the files which can be read are jpeg, tiff and gif files
   ****************************************************************************/

  public static void StandardUsage() {
    System.out.println("JpegEncoder for Java(tm) Version 0.9");
    System.out.println("");
    System.out
        .println("Program usage: java Jpeg \"InputImage\".\"ext\" Quality [\"OutputFile\"[.jpg]]");
    System.out.println("");
    System.out
        .println("Where \"InputImage\" is the name of an existing image in the current directory.");
    System.out
        .println("  (\"InputImage may specify a directory, too.) \"ext\" must be .tif, .gif,");
    System.out.println("  or .jpg.");
    System.out
        .println("Quality is an integer (0 to 100) that specifies how similar the compressed");
    System.out
        .println("  image is to \"InputImage.\"  100 is almost exactly like \"InputImage\" and 0 is");
    System.out.println("  most dissimilar.  In most cases, 70 - 80 gives very good results.");
    System.out
        .println("\"OutputFile\" is an optional argument.  If \"OutputFile\" isn't specified, then");
    System.out
        .println("  the input file name is adopted.  This program will NOT write over an existing");
    System.out
        .println("  file.  If a directory is specified for the input image, then \"OutputFile\"");
    System.out
        .println("  will be written in that directory.  The extension \".jpg\" may automatically be");
    System.out.println("  added.");
    System.out.println("");
    System.out
        .println("Copyright 1998 BioElectroMech and James R. Weeks.  Portions copyright IJG and");
    System.out.println("  Florian Raemy, LCAV.  See license.txt for details.");
    System.out.println("Visit BioElectroMech at www.obrador.com.  Email James@obrador.com.");
    System.exit(0);
  }

  public static void main(String args[]) {
    Image image = null;
    FileOutputStream dataOut = null;
    File file, outFile;
    JpegEncoder jpg;
    String string = "";
    int i, Quality = 80;
    // Check to see if the input file name has one of the extensions:
    // .tif, .gif, .jpg
    // If not, print the standard use info.
    if (args.length < 2)
      StandardUsage();
    if (!args[0].endsWith(".jpg") && !args[0].endsWith(".tif") && !args[0].endsWith(".gif"))
      StandardUsage();
    // First check to see if there is an OutputFile argument. If there isn't
    // then name the file "InputFile".jpg
    // Second check to see if the .jpg extension is on the OutputFile argument.
    // If there isn't one, add it.
    // Need to check for the existence of the output file. If it exists already,
    // rename the file with a # after the file name, then the .jpg extension.
    if (args.length < 3) {
      string = args[0].substring(0, args[0].lastIndexOf(".")) + ".jpg";
    } else {
      string = args[2];
      if (string.endsWith(".tif") || string.endsWith(".gif"))
        string = string.substring(0, string.lastIndexOf("."));
      if (!string.endsWith(".jpg"))
        string = string.concat(".jpg");
    }
    outFile = new File(string);
    i = 1;
    while (outFile.exists()) {
      outFile = new File(string.substring(0, string.lastIndexOf(".")) + (i++) + ".jpg");
      if (i > 100)
        System.exit(0);
    }
    file = new File(args[0]);
    if (file.exists()) {
      try {
        dataOut = new FileOutputStream(outFile);
      } catch (IOException e) {
      }
      try {
        Quality = Integer.parseInt(args[1]);
      } catch (NumberFormatException e) {
        StandardUsage();
      }
      image = Toolkit.getDefaultToolkit().getImage(args[0]);
      jpg = new JpegEncoder(image, Quality, dataOut);
      jpg.Compress();
      try {
        dataOut.close();
      } catch (IOException e) {
      }
    } else {
      System.out.println("I couldn't find " + args[0] + ". Is it in another directory?");
    }
    System.exit(0);
  }
}

// Version 1.0a
// Copyright (C) 1998, James R. Weeks and BioElectroMech.
// Visit BioElectroMech at www.obrador.com. Email James@obrador.com.

// See license.txt for details about the allowed used of this software.
// This software is based in part on the work of the Independent JPEG Group.
// See IJGreadme.txt for details about the Independent JPEG Group's license.

// This encoder is inspired by the Java Jpeg encoder by Florian Raemy,
// studwww.eurecom.fr/~raemy.
// It borrows a great deal of code and structure from the Independent
// Jpeg Group's Jpeg 6a library, Copyright Thomas G. Lane.
// See license.txt for details.

/*
 * JpegEncoder - The JPEG main program which performs a jpeg compression of an
 * image.
 */
class JpegEncoder extends Frame {
  Thread runner;

  BufferedOutputStream outStream;

  Image image;

  JpegInfo JpegObj;

  Huffman Huf;

  DCT dct;

  int imageHeight, imageWidth;

  int Quality;

  int code;

  public static int[] jpegNaturalOrder = { 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5,
      12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, 35, 42, 49, 56, 57, 50, 43, 36,
      29, 22, 15, 23, 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62,
      63, };

  public JpegEncoder(Image image, int quality, OutputStream out) {
    MediaTracker tracker = new MediaTracker(this);
    tracker.addImage(image, 0);
    try {
      tracker.waitForID(0);
    } catch (InterruptedException e) {
      // Got to do something?
    }
    /*
     * Quality of the image. 0 to 100 and from bad image quality, high
     * compression to good image quality low compression
     */
    Quality = quality;

    /*
     * Getting picture information It takes the Width, Height and RGB scans of
     * the image.
     */
    JpegObj = new JpegInfo(image);

    imageHeight = JpegObj.imageHeight;
    imageWidth = JpegObj.imageWidth;
    outStream = new BufferedOutputStream(out);
    dct = new DCT(Quality);
    Huf = new Huffman(imageWidth, imageHeight);
  }

  public void setQuality(int quality) {
    dct = new DCT(quality);
  }

  public int getQuality() {
    return Quality;
  }

  public void Compress() {
    WriteHeaders(outStream);
    WriteCompressedData(outStream);
    WriteEOI(outStream);
    try {
      outStream.flush();
    } catch (IOException e) {
      System.out.println("IO Error: " + e.getMessage());
    }
  }

  public void WriteCompressedData(BufferedOutputStream outStream) {
    int i, j, r, c, a, b;
    int comp, xpos, ypos, xblockoffset, yblockoffset;
    float inputArray[][];
    float dctArray1[][] = new float[8][8];
    double dctArray2[][] = new double[8][8];
    int dctArray3[] = new int[8 * 8];

    /*
     * This method controls the compression of the image. Starting at the upper
     * left of the image, it compresses 8x8 blocks of data until the entire
     * image has been compressed.
     */

    int lastDCvalue[] = new int[JpegObj.NumberOfComponents];
    // int zeroArray[] = new int[64]; // initialized to hold all zeros
    // int Width = 0, Height = 0;
    // int nothing = 0, not;
    int MinBlockWidth, MinBlockHeight;
    // This initial setting of MinBlockWidth and MinBlockHeight is done to
    // ensure they start with values larger than will actually be the case.
    MinBlockWidth = ((imageWidth % 8 != 0) ? (int) (Math.floor(imageWidth / 8.0) + 1) * 8
        : imageWidth);
    MinBlockHeight = ((imageHeight % 8 != 0) ? (int) (Math.floor(imageHeight / 8.0) + 1) * 8
        : imageHeight);
    for (comp = 0; comp < JpegObj.NumberOfComponents; comp++) {
      MinBlockWidth = Math.min(MinBlockWidth, JpegObj.BlockWidth[comp]);
      MinBlockHeight = Math.min(MinBlockHeight, JpegObj.BlockHeight[comp]);
    }
    xpos = 0;
    for (r = 0; r < MinBlockHeight; r++) {
      for (c = 0; c < MinBlockWidth; c++) {
        xpos = c * 8;
        ypos = r * 8;
        for (comp = 0; comp < JpegObj.NumberOfComponents; comp++) {
          // Width = JpegObj.BlockWidth[comp];
          // Height = JpegObj.BlockHeight[comp];
          inputArray = (float[][]) JpegObj.Components[comp];

          for (i = 0; i < JpegObj.VsampFactor[comp]; i++) {
            for (j = 0; j < JpegObj.HsampFactor[comp]; j++) {
              xblockoffset = j * 8;
              yblockoffset = i * 8;
              for (a = 0; a < 8; a++) {
                for (b = 0; b < 8; b++) {

                  // I believe this is where the dirty line at the bottom of
                  // the image is coming from.
                  // I need to do a check here to make sure I'm not reading past
                  // image data.
                  // This seems to not be a big issue right now. (04/04/98)

                  dctArray1[a][b] = inputArray[ypos + yblockoffset + a][xpos + xblockoffset + b];
                }
              }
              // The following code commented out because on some images this
              // technique
              // results in poor right and bottom borders.
              // if ((!JpegObj.lastColumnIsDummy[comp] || c < Width - 1) &&
              // (!JpegObj.lastRowIsDummy[comp] || r < Height - 1)) {
              dctArray2 = dct.forwardDCT(dctArray1);
              dctArray3 = dct.quantizeBlock(dctArray2, JpegObj.QtableNumber[comp]);
              // }
              // else {
              // zeroArray[0] = dctArray3[0];
              // zeroArray[0] = lastDCvalue[comp];
              // dctArray3 = zeroArray;
              // }
              Huf.HuffmanBlockEncoder(outStream, dctArray3, lastDCvalue[comp],
                  JpegObj.DCtableNumber[comp], JpegObj.ACtableNumber[comp]);
              lastDCvalue[comp] = dctArray3[0];
            }
          }
        }
      }
    }
    Huf.flushBuffer(outStream);
  }

  public void WriteEOI(BufferedOutputStream out) {
    byte[] EOI = { (byte) 0xFF, (byte) 0xD9 };
    WriteMarker(EOI, out);
  }

  public void WriteHeaders(BufferedOutputStream out) {
    int i, j, index, offset, length;
    int tempArray[];

    // the SOI marker
    byte[] SOI = { (byte) 0xFF, (byte) 0xD8 };
    WriteMarker(SOI, out);

    // The order of the following headers is quiet inconsequential.
    // the JFIF header
    byte JFIF[] = new byte[18];
    JFIF[0] = (byte) 0xff;
    JFIF[1] = (byte) 0xe0;
    JFIF[2] = (byte) 0x00;
    JFIF[3] = (byte) 0x10;
    JFIF[4] = (byte) 0x4a;
    JFIF[5] = (byte) 0x46;
    JFIF[6] = (byte) 0x49;
    JFIF[7] = (byte) 0x46;
    JFIF[8] = (byte) 0x00;
    JFIF[9] = (byte) 0x01;
    JFIF[10] = (byte) 0x00;
    JFIF[11] = (byte) 0x00;
    JFIF[12] = (byte) 0x00;
    JFIF[13] = (byte) 0x01;
    JFIF[14] = (byte) 0x00;
    JFIF[15] = (byte) 0x01;
    JFIF[16] = (byte) 0x00;
    JFIF[17] = (byte) 0x00;
    WriteArray(JFIF, out);

    // Comment Header
    String comment = "";
    comment = JpegObj.getComment();
    length = comment.length();
    byte COM[] = new byte[length + 4];
    COM[0] = (byte) 0xFF;
    COM[1] = (byte) 0xFE;
    COM[2] = (byte) ((length >> 8) & 0xFF);
    COM[3] = (byte) (length & 0xFF);
    java.lang.System.arraycopy(JpegObj.Comment.getBytes(), 0, COM, 4, JpegObj.Comment.length());
    WriteArray(COM, out);

    // The DQT header
    // 0 is the luminance index and 1 is the chrominance index
    byte DQT[] = new byte[134];
    DQT[0] = (byte) 0xFF;
    DQT[1] = (byte) 0xDB;
    DQT[2] = (byte) 0x00;
    DQT[3] = (byte) 0x84;
    offset = 4;
    for (i = 0; i < 2; i++) {
      DQT[offset++] = (byte) ((0 << 4) + i);
      tempArray = (int[]) dct.quantum[i];
      for (j = 0; j < 64; j++) {
        DQT[offset++] = (byte) tempArray[jpegNaturalOrder[j]];
      }
    }
    WriteArray(DQT, out);

    // Start of Frame Header
    byte SOF[] = new byte[19];
    SOF[0] = (byte) 0xFF;
    SOF[1] = (byte) 0xC0;
    SOF[2] = (byte) 0x00;
    SOF[3] = (byte) 17;
    SOF[4] = (byte) JpegObj.Precision;
    SOF[5] = (byte) ((JpegObj.imageHeight >> 8) & 0xFF);
    SOF[6] = (byte) ((JpegObj.imageHeight) & 0xFF);
    SOF[7] = (byte) ((JpegObj.imageWidth >> 8) & 0xFF);
    SOF[8] = (byte) ((JpegObj.imageWidth) & 0xFF);
    SOF[9] = (byte) JpegObj.NumberOfComponents;
    index = 10;
    for (i = 0; i < SOF[9]; i++) {
      SOF[index++] = (byte) JpegObj.CompID[i];
      SOF[index++] = (byte) ((JpegObj.HsampFactor[i] << 4) + JpegObj.VsampFactor[i]);
      SOF[index++] = (byte) JpegObj.QtableNumber[i];
    }
    WriteArray(SOF, out);

    // The DHT Header
    byte DHT1[], DHT2[], DHT3[], DHT4[];
    int bytes, temp, oldindex, intermediateindex;
    length = 2;
    index = 4;
    oldindex = 4;
    DHT1 = new byte[17];
    DHT4 = new byte[4];
    DHT4[0] = (byte) 0xFF;
    DHT4[1] = (byte) 0xC4;
    for (i = 0; i < 4; i++) {
      bytes = 0;
      DHT1[index++ - oldindex] = (byte) ((int[]) Huf.bits.elementAt(i))[0];
      for (j = 1; j < 17; j++) {
        temp = ((int[]) Huf.bits.elementAt(i))[j];
        DHT1[index++ - oldindex] = (byte) temp;
        bytes += temp;
      }
      intermediateindex = index;
      DHT2 = new byte[bytes];
      for (j = 0; j < bytes; j++) {
        DHT2[index++ - intermediateindex] = (byte) ((int[]) Huf.val.elementAt(i))[j];
      }
      DHT3 = new byte[index];
      java.lang.System.arraycopy(DHT4, 0, DHT3, 0, oldindex);
      java.lang.System.arraycopy(DHT1, 0, DHT3, oldindex, 17);
      java.lang.System.arraycopy(DHT2, 0, DHT3, oldindex + 17, bytes);
      DHT4 = DHT3;
      oldindex = index;
    }
    DHT4[2] = (byte) (((index - 2) >> 8) & 0xFF);
    DHT4[3] = (byte) ((index - 2) & 0xFF);
    WriteArray(DHT4, out);

    // Start of Scan Header
    byte SOS[] = new byte[14];
    SOS[0] = (byte) 0xFF;
    SOS[1] = (byte) 0xDA;
    SOS[2] = (byte) 0x00;
    SOS[3] = (byte) 12;
    SOS[4] = (byte) JpegObj.NumberOfComponents;
    index = 5;
    for (i = 0; i < SOS[4]; i++) {
      SOS[index++] = (byte) JpegObj.CompID[i];
      SOS[index++] = (byte) ((JpegObj.DCtableNumber[i] << 4) + JpegObj.ACtableNumber[i]);
    }
    SOS[index++] = (byte) JpegObj.Ss;
    SOS[index++] = (byte) JpegObj.Se;
    SOS[index++] = (byte) ((JpegObj.Ah << 4) + JpegObj.Al);
    WriteArray(SOS, out);

  }

  void WriteMarker(byte[] data, BufferedOutputStream out) {
    try {
      out.write(data, 0, 2);
    } catch (IOException e) {
      System.out.println("IO Error: " + e.getMessage());
    }
  }

  void WriteArray(byte[] data, BufferedOutputStream out) {
    int length;
    try {
      length = ((data[2] & 0xFF) << 8) + (data[3] & 0xFF) + 2;
      out.write(data, 0, length);
    } catch (IOException e) {
      System.out.println("IO Error: " + e.getMessage());
    }
  }
}

// This class incorporates quality scaling as implemented in the JPEG-6a
// library.

/*
 * DCT - A Java implementation of the Discreet Cosine Transform
 */

class DCT {
  /**
   * DCT Block Size - default 8
   */
  public int N = 8;

  /**
   * Image Quality (0-100) - default 80 (good image / good compression)
   */
  public int QUALITY = 80;

  public Object quantum[] = new Object[2];

  public Object Divisors[] = new Object[2];

  /**
   * Quantitization Matrix for luminace.
   */
  public int quantum_luminance[] = new int[N * N];

  public double DivisorsLuminance[] = new double[N * N];

  /**
   * Quantitization Matrix for chrominance.
   */
  public int quantum_chrominance[] = new int[N * N];

  public double DivisorsChrominance[] = new double[N * N];

  /**
   * Constructs a new DCT object. Initializes the cosine transform matrix these
   * are used when computing the DCT and it's inverse. This also initializes the
   * run length counters and the ZigZag sequence. Note that the image quality
   * can be worse than 25 however the image will be extemely pixelated, usually
   * to a block size of N.
   * 
   * @param QUALITY
   *          The quality of the image (0 worst - 100 best)
   * 
   */
  public DCT(int QUALITY) {
    initMatrix(QUALITY);
  }

  /*
   * This method sets up the quantization matrix for luminance and chrominance
   * using the Quality parameter.
   */
  private void initMatrix(int quality) {
    double[] AANscaleFactor = { 1.0, 1.387039845, 1.306562965, 1.175875602, 1.0, 0.785694958,
        0.541196100, 0.275899379 };
    int i;
    int j;
    int index;
    int Quality;
    int temp;

    // converting quality setting to that specified in the jpeg_quality_scaling
    // method in the IJG Jpeg-6a C libraries

    Quality = quality;
    if (Quality <= 0)
      Quality = 1;
    if (Quality > 100)
      Quality = 100;
    if (Quality < 50)
      Quality = 5000 / Quality;
    else
      Quality = 200 - Quality * 2;

    // Creating the luminance matrix

    quantum_luminance[0] = 16;
    quantum_luminance[1] = 11;
    quantum_luminance[2] = 10;
    quantum_luminance[3] = 16;
    quantum_luminance[4] = 24;
    quantum_luminance[5] = 40;
    quantum_luminance[6] = 51;
    quantum_luminance[7] = 61;
    quantum_luminance[8] = 12;
    quantum_luminance[9] = 12;
    quantum_luminance[10] = 14;
    quantum_luminance[11] = 19;
    quantum_luminance[12] = 26;
    quantum_luminance[13] = 58;
    quantum_luminance[14] = 60;
    quantum_luminance[15] = 55;
    quantum_luminance[16] = 14;
    quantum_luminance[17] = 13;
    quantum_luminance[18] = 16;
    quantum_luminance[19] = 24;
    quantum_luminance[20] = 40;
    quantum_luminance[21] = 57;
    quantum_luminance[22] = 69;
    quantum_luminance[23] = 56;
    quantum_luminance[24] = 14;
    quantum_luminance[25] = 17;
    quantum_luminance[26] = 22;
    quantum_luminance[27] = 29;
    quantum_luminance[28] = 51;
    quantum_luminance[29] = 87;
    quantum_luminance[30] = 80;
    quantum_luminance[31] = 62;
    quantum_luminance[32] = 18;
    quantum_luminance[33] = 22;
    quantum_luminance[34] = 37;
    quantum_luminance[35] = 56;
    quantum_luminance[36] = 68;
    quantum_luminance[37] = 109;
    quantum_luminance[38] = 103;
    quantum_luminance[39] = 77;
    quantum_luminance[40] = 24;
    quantum_luminance[41] = 35;
    quantum_luminance[42] = 55;
    quantum_luminance[43] = 64;
    quantum_luminance[44] = 81;
    quantum_luminance[45] = 104;
    quantum_luminance[46] = 113;
    quantum_luminance[47] = 92;
    quantum_luminance[48] = 49;
    quantum_luminance[49] = 64;
    quantum_luminance[50] = 78;
    quantum_luminance[51] = 87;
    quantum_luminance[52] = 103;
    quantum_luminance[53] = 121;
    quantum_luminance[54] = 120;
    quantum_luminance[55] = 101;
    quantum_luminance[56] = 72;
    quantum_luminance[57] = 92;
    quantum_luminance[58] = 95;
    quantum_luminance[59] = 98;
    quantum_luminance[60] = 112;
    quantum_luminance[61] = 100;
    quantum_luminance[62] = 103;
    quantum_luminance[63] = 99;

    for (j = 0; j < 64; j++) {
      temp = (quantum_luminance[j] * Quality + 50) / 100;
      if (temp <= 0)
        temp = 1;
      if (temp > 255)
        temp = 255;
      quantum_luminance[j] = temp;
    }
    index = 0;
    for (i = 0; i < 8; i++) {
      for (j = 0; j < 8; j++) {
        // The divisors for the LL&M method (the slow integer method used in
        // jpeg 6a library). This method is currently (04/04/98) incompletely
        // implemented.
        // DivisorsLuminance[index] = ((double) quantum_luminance[index]) << 3;
        // The divisors for the AAN method (the float method used in jpeg 6a
        // library.
        DivisorsLuminance[index] = (1.0 / (quantum_luminance[index] * AANscaleFactor[i]
            * AANscaleFactor[j] * 8.0));
        index++;
      }
    }

    // Creating the chrominance matrix

    quantum_chrominance[0] = 17;
    quantum_chrominance[1] = 18;
    quantum_chrominance[2] = 24;
    quantum_chrominance[3] = 47;
    quantum_chrominance[4] = 99;
    quantum_chrominance[5] = 99;
    quantum_chrominance[6] = 99;
    quantum_chrominance[7] = 99;
    quantum_chrominance[8] = 18;
    quantum_chrominance[9] = 21;
    quantum_chrominance[10] = 26;
    quantum_chrominance[11] = 66;
    quantum_chrominance[12] = 99;
    quantum_chrominance[13] = 99;
    quantum_chrominance[14] = 99;
    quantum_chrominance[15] = 99;
    quantum_chrominance[16] = 24;
    quantum_chrominance[17] = 26;
    quantum_chrominance[18] = 56;
    quantum_chrominance[19] = 99;
    quantum_chrominance[20] = 99;
    quantum_chrominance[21] = 99;
    quantum_chrominance[22] = 99;
    quantum_chrominance[23] = 99;
    quantum_chrominance[24] = 47;
    quantum_chrominance[25] = 66;
    quantum_chrominance[26] = 99;
    quantum_chrominance[27] = 99;
    quantum_chrominance[28] = 99;
    quantum_chrominance[29] = 99;
    quantum_chrominance[30] = 99;
    quantum_chrominance[31] = 99;
    quantum_chrominance[32] = 99;
    quantum_chrominance[33] = 99;
    quantum_chrominance[34] = 99;
    quantum_chrominance[35] = 99;
    quantum_chrominance[36] = 99;
    quantum_chrominance[37] = 99;
    quantum_chrominance[38] = 99;
    quantum_chrominance[39] = 99;
    quantum_chrominance[40] = 99;
    quantum_chrominance[41] = 99;
    quantum_chrominance[42] = 99;
    quantum_chrominance[43] = 99;
    quantum_chrominance[44] = 99;
    quantum_chrominance[45] = 99;
    quantum_chrominance[46] = 99;
    quantum_chrominance[47] = 99;
    quantum_chrominance[48] = 99;
    quantum_chrominance[49] = 99;
    quantum_chrominance[50] = 99;
    quantum_chrominance[51] = 99;
    quantum_chrominance[52] = 99;
    quantum_chrominance[53] = 99;
    quantum_chrominance[54] = 99;
    quantum_chrominance[55] = 99;
    quantum_chrominance[56] = 99;
    quantum_chrominance[57] = 99;
    quantum_chrominance[58] = 99;
    quantum_chrominance[59] = 99;
    quantum_chrominance[60] = 99;
    quantum_chrominance[61] = 99;
    quantum_chrominance[62] = 99;
    quantum_chrominance[63] = 99;

    for (j = 0; j < 64; j++) {
      temp = (quantum_chrominance[j] * Quality + 50) / 100;
      if (temp <= 0)
        temp = 1;
      if (temp >= 255)
        temp = 255;
      quantum_chrominance[j] = temp;
    }
    index = 0;
    for (i = 0; i < 8; i++) {
      for (j = 0; j < 8; j++) {
        // The divisors for the LL&M method (the slow integer method used in
        // jpeg 6a library). This method is currently (04/04/98) incompletely
        // implemented.
        // DivisorsChrominance[index] = ((double) quantum_chrominance[index]) <<
        // 3;
        // The divisors for the AAN method (the float method used in jpeg 6a
        // library.
        DivisorsChrominance[index] = 1.0 / (quantum_chrominance[index] * AANscaleFactor[i]
            * AANscaleFactor[j] * 8.0);
        index++;
      }
    }

    // quantum and Divisors are objects used to hold the appropriate matices

    quantum[0] = quantum_luminance;
    Divisors[0] = DivisorsLuminance;
    quantum[1] = quantum_chrominance;
    Divisors[1] = DivisorsChrominance;

  }

  /*
   * This method preforms forward DCT on a block of image data using the literal
   * method specified for a 2-D Discrete Cosine Transform. It is included as a
   * curiosity and can give you an idea of the difference in the compression
   * result (the resulting image quality) by comparing its output to the output
   * of the AAN method below. It is ridiculously inefficient.
   */

  // For now the final output is unusable. The associated quantization step
  // needs some tweaking. If you get this part working, please let me know.
  public double[][] forwardDCTExtreme(float input[][]) {
    double output[][] = new double[N][N];
    int v, u, x, y;
    for (v = 0; v < 8; v++) {
      for (u = 0; u < 8; u++) {
        for (x = 0; x < 8; x++) {
          for (y = 0; y < 8; y++) {
            output[v][u] += input[x][y]
                * Math.cos(((double) (2 * x + 1) * (double) u * Math.PI) / 16)
                * Math.cos(((double) (2 * y + 1) * (double) v * Math.PI) / 16);
          }
        }
        output[v][u] *= (0.25) * ((u == 0) ? (1.0 / Math.sqrt(2)) : (double) 1.0)
            * ((v == 0) ? (1.0 / Math.sqrt(2)) : (double) 1.0);
      }
    }
    return output;
  }

  /*
   * This method preforms a DCT on a block of image data using the AAN method as
   * implemented in the IJG Jpeg-6a library.
   */
  public double[][] forwardDCT(float input[][]) {
    double output[][] = new double[N][N];
    double tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
    double tmp10, tmp11, tmp12, tmp13;
    double z1, z2, z3, z4, z5, z11, z13;
    int i;
    int j;

    // Subtracts 128 from the input values
    for (i = 0; i < 8; i++) {
      for (j = 0; j < 8; j++) {
        output[i][j] = (input[i][j] - 128.0);
        // input[i][j] -= 128;

      }
    }

    for (i = 0; i < 8; i++) {
      tmp0 = output[i][0] + output[i][7];
      tmp7 = output[i][0] - output[i][7];
      tmp1 = output[i][1] + output[i][6];
      tmp6 = output[i][1] - output[i][6];
      tmp2 = output[i][2] + output[i][5];
      tmp5 = output[i][2] - output[i][5];
      tmp3 = output[i][3] + output[i][4];
      tmp4 = output[i][3] - output[i][4];

      tmp10 = tmp0 + tmp3;
      tmp13 = tmp0 - tmp3;
      tmp11 = tmp1 + tmp2;
      tmp12 = tmp1 - tmp2;

      output[i][0] = tmp10 + tmp11;
      output[i][4] = tmp10 - tmp11;

      z1 = (tmp12 + tmp13) * 0.707106781;
      output[i][2] = tmp13 + z1;
      output[i][6] = tmp13 - z1;

      tmp10 = tmp4 + tmp5;
      tmp11 = tmp5 + tmp6;
      tmp12 = tmp6 + tmp7;

      z5 = (tmp10 - tmp12) * 0.382683433;
      z2 = 0.541196100 * tmp10 + z5;
      z4 = 1.306562965 * tmp12 + z5;
      z3 = tmp11 * 0.707106781;

      z11 = tmp7 + z3;
      z13 = tmp7 - z3;

      output[i][5] = z13 + z2;
      output[i][3] = z13 - z2;
      output[i][1] = z11 + z4;
      output[i][7] = z11 - z4;
    }

    for (i = 0; i < 8; i++) {
      tmp0 = output[0][i] + output[7][i];
      tmp7 = output[0][i] - output[7][i];
      tmp1 = output[1][i] + output[6][i];
      tmp6 = output[1][i] - output[6][i];
      tmp2 = output[2][i] + output[5][i];
      tmp5 = output[2][i] - output[5][i];
      tmp3 = output[3][i] + output[4][i];
      tmp4 = output[3][i] - output[4][i];

      tmp10 = tmp0 + tmp3;
      tmp13 = tmp0 - tmp3;
      tmp11 = tmp1 + tmp2;
      tmp12 = tmp1 - tmp2;

      output[0][i] = tmp10 + tmp11;
      output[4][i] = tmp10 - tmp11;

      z1 = (tmp12 + tmp13) * 0.707106781;
      output[2][i] = tmp13 + z1;
      output[6][i] = tmp13 - z1;

      tmp10 = tmp4 + tmp5;
      tmp11 = tmp5 + tmp6;
      tmp12 = tmp6 + tmp7;

      z5 = (tmp10 - tmp12) * 0.382683433;
      z2 = 0.541196100 * tmp10 + z5;
      z4 = 1.306562965 * tmp12 + z5;
      z3 = tmp11 * 0.707106781;

      z11 = tmp7 + z3;
      z13 = tmp7 - z3;

      output[5][i] = z13 + z2;
      output[3][i] = z13 - z2;
      output[1][i] = z11 + z4;
      output[7][i] = z11 - z4;
    }

    return output;
  }

  /*
   * This method quantitizes data and rounds it to the nearest integer.
   */
  public int[] quantizeBlock(double inputData[][], int code) {
    int outputData[] = new int[N * N];
    int i, j;
    int index;
    index = 0;
    for (i = 0; i < 8; i++) {
      for (j = 0; j < 8; j++) {
        // The second line results in significantly better compression.
        outputData[index] = (int) (Math.round(inputData[i][j]
            * (((double[]) (Divisors[code]))[index])));
        // outputData[index] = (int)(((inputData[i][j] * (((double[])
        // (Divisors[code]))[index])) + 16384.5) -16384);
        index++;
      }
    }

    return outputData;
  }

  /*
   * This is the method for quantizing a block DCT'ed with forwardDCTExtreme
   * This method quantitizes data and rounds it to the nearest integer.
   */
  public int[] quantizeBlockExtreme(double inputData[][], int code) {
    int outputData[] = new int[N * N];
    int i, j;
    int index;
    index = 0;
    for (i = 0; i < 8; i++) {
      for (j = 0; j < 8; j++) {
        outputData[index] = (int) (Math.round(inputData[i][j] / (((int[]) (quantum[code]))[index])));
        index++;
      }
    }

    return outputData;
  }
}

// This class was modified by James R. Weeks on 3/27/98.
// It now incorporates Huffman table derivation as in the C jpeg library
// from the IJG, Jpeg-6a.

class Huffman {
  int bufferPutBits, bufferPutBuffer;

  public int ImageHeight;

  public int ImageWidth;

  public int DC_matrix0[][];

  public int AC_matrix0[][];

  public int DC_matrix1[][];

  public int AC_matrix1[][];

  public Object DC_matrix[];

  public Object AC_matrix[];

  public int code;

  public int NumOfDCTables;

  public int NumOfACTables;

  public int[] bitsDCluminance = { 0x00, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 };

  public int[] valDCluminance = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };

  public int[] bitsDCchrominance = { 0x01, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 };

  public int[] valDCchrominance = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };

  public int[] bitsACluminance = { 0x10, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d };

  public int[] valACluminance = { 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12, 0x21, 0x31, 0x41,
      0x06, 0x13, 0x51, 0x61, 0x07, 0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08, 0x23, 0x42,
      0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0, 0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16, 0x17,
      0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
      0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
      0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77,
      0x78, 0x79, 0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95,
      0x96, 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2,
      0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8,
      0xc9, 0xca, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2, 0xe3, 0xe4,
      0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9,
      0xfa };

  public int[] bitsACchrominance = { 0x11, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 };

  public int[] valACchrominance = { 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21, 0x31, 0x06,
      0x12, 0x41, 0x51, 0x07, 0x61, 0x71, 0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91, 0xa1,
      0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0, 0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,
      0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37,
      0x38, 0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56,
      0x57, 0x58, 0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x73, 0x74, 0x75,
      0x76, 0x77, 0x78, 0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x92,
      0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8,
      0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,
      0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe2,
      0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
      0xf9, 0xfa };

  public Vector bits;

  public Vector val;

  /*
   * jpegNaturalOrder[i] is the natural-order position of the i'th element of
   * zigzag order.
   */
  public static int[] jpegNaturalOrder = { 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5,
      12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, 35, 42, 49, 56, 57, 50, 43, 36,
      29, 22, 15, 23, 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62,
      63, };

  /*
   * The Huffman class constructor
   */
  public Huffman(int Width, int Height) {

    bits = new Vector();
    bits.addElement(bitsDCluminance);
    bits.addElement(bitsACluminance);
    bits.addElement(bitsDCchrominance);
    bits.addElement(bitsACchrominance);
    val = new Vector();
    val.addElement(valDCluminance);
    val.addElement(valACluminance);
    val.addElement(valDCchrominance);
    val.addElement(valACchrominance);
    initHuf();
    ImageWidth = Width;
    ImageHeight = Height;

  }

  /**
   * HuffmanBlockEncoder run length encodes and Huffman encodes the quantized
   * data.
   * 
   * @param outStream
   * @param zigzag
   * @param prec
   * @param DCcode
   * @param ACcode
   */

  public void HuffmanBlockEncoder(BufferedOutputStream outStream, int zigzag[], int prec,
      int DCcode, int ACcode) {
    int temp, temp2, nbits, k, r, i;

    NumOfDCTables = 2;
    NumOfACTables = 2;

    // The DC portion

    temp = temp2 = zigzag[0] - prec;
    if (temp < 0) {
      temp = -temp;
      temp2--;
    }
    nbits = 0;
    while (temp != 0) {
      nbits++;
      temp >>= 1;
    }
    // if (nbits > 11) nbits = 11;
    bufferIt(outStream, ((int[][]) DC_matrix[DCcode])[nbits][0],
        ((int[][]) DC_matrix[DCcode])[nbits][1]);
    // The arguments in bufferIt are code and size.
    if (nbits != 0) {
      bufferIt(outStream, temp2, nbits);
    }

    // The AC portion

    r = 0;

    for (k = 1; k < 64; k++) {
      if ((temp = zigzag[jpegNaturalOrder[k]]) == 0) {
        r++;
      } else {
        while (r > 15) {
          bufferIt(outStream, ((int[][]) AC_matrix[ACcode])[0xF0][0],
              ((int[][]) AC_matrix[ACcode])[0xF0][1]);
          r -= 16;
        }
        temp2 = temp;
        if (temp < 0) {
          temp = -temp;
          temp2--;
        }
        nbits = 1;
        while ((temp >>= 1) != 0) {
          nbits++;
        }
        i = (r << 4) + nbits;
        bufferIt(outStream, ((int[][]) AC_matrix[ACcode])[i][0],
            ((int[][]) AC_matrix[ACcode])[i][1]);
        bufferIt(outStream, temp2, nbits);

        r = 0;
      }
    }

    if (r > 0) {
      bufferIt(outStream, ((int[][]) AC_matrix[ACcode])[0][0], ((int[][]) AC_matrix[ACcode])[0][1]);
    }

  }

  // Uses an integer long (32 bits) buffer to store the Huffman encoded bits
  // and sends them to outStream by the byte.

  void bufferIt(BufferedOutputStream outStream, int code, int size) {
    int PutBuffer = code;
    int PutBits = bufferPutBits;

    PutBuffer &= (1 << size) - 1;
    PutBits += size;
    PutBuffer <<= 24 - PutBits;
    PutBuffer |= bufferPutBuffer;

    while (PutBits >= 8) {
      int c = ((PutBuffer >> 16) & 0xFF);
      try {
        outStream.write(c);
      } catch (IOException e) {
        System.out.println("IO Error: " + e.getMessage());
      }
      if (c == 0xFF) {
        try {
          outStream.write(0);
        } catch (IOException e) {
          System.out.println("IO Error: " + e.getMessage());
        }
      }
      PutBuffer <<= 8;
      PutBits -= 8;
    }
    bufferPutBuffer = PutBuffer;
    bufferPutBits = PutBits;

  }

  void flushBuffer(BufferedOutputStream outStream) {
    int PutBuffer = bufferPutBuffer;
    int PutBits = bufferPutBits;
    while (PutBits >= 8) {
      int c = ((PutBuffer >> 16) & 0xFF);
      try {
        outStream.write(c);
      } catch (IOException e) {
        System.out.println("IO Error: " + e.getMessage());
      }
      if (c == 0xFF) {
        try {
          outStream.write(0);
        } catch (IOException e) {
          System.out.println("IO Error: " + e.getMessage());
        }
      }
      PutBuffer <<= 8;
      PutBits -= 8;
    }
    if (PutBits > 0) {
      int c = ((PutBuffer >> 16) & 0xFF);
      try {
        outStream.write(c);
      } catch (IOException e) {
        System.out.println("IO Error: " + e.getMessage());
      }
    }
  }

  /*
   * Initialisation of the Huffman codes for Luminance and Chrominance. This
   * code results in the same tables created in the IJG Jpeg-6a library.
   */

  public void initHuf() {
    DC_matrix0 = new int[12][2];
    DC_matrix1 = new int[12][2];
    AC_matrix0 = new int[255][2];
    AC_matrix1 = new int[255][2];
    DC_matrix = new Object[2];
    AC_matrix = new Object[2];
    int p, l, i, lastp, si, code;
    int[] huffsize = new int[257];
    int[] huffcode = new int[257];

    /*
     * init of the DC values for the chrominance [][0] is the code [][1] is the
     * number of bit
     */

    p = 0;
    for (l = 1; l <= 16; l++) {
      for (i = 1; i <= bitsDCchrominance[l]; i++) {
        huffsize[p++] = l;
      }
    }
    huffsize[p] = 0;
    lastp = p;

    code = 0;
    si = huffsize[0];
    p = 0;
    while (huffsize[p] != 0) {
      while (huffsize[p] == si) {
        huffcode[p++] = code;
        code++;
      }
      code <<= 1;
      si++;
    }

    for (p = 0; p < lastp; p++) {
      DC_matrix1[valDCchrominance[p]][0] = huffcode[p];
      DC_matrix1[valDCchrominance[p]][1] = huffsize[p];
    }

    /*
     * Init of the AC hufmann code for the chrominance matrix [][][0] is the
     * code & matrix[][][1] is the number of bit needed
     */

    p = 0;
    for (l = 1; l <= 16; l++) {
      for (i = 1; i <= bitsACchrominance[l]; i++) {
        huffsize[p++] = l;
      }
    }
    huffsize[p] = 0;
    lastp = p;

    code = 0;
    si = huffsize[0];
    p = 0;
    while (huffsize[p] != 0) {
      while (huffsize[p] == si) {
        huffcode[p++] = code;
        code++;
      }
      code <<= 1;
      si++;
    }

    for (p = 0; p < lastp; p++) {
      AC_matrix1[valACchrominance[p]][0] = huffcode[p];
      AC_matrix1[valACchrominance[p]][1] = huffsize[p];
    }

    /*
     * init of the DC values for the luminance [][0] is the code [][1] is the
     * number of bit
     */
    p = 0;
    for (l = 1; l <= 16; l++) {
      for (i = 1; i <= bitsDCluminance[l]; i++) {
        huffsize[p++] = l;
      }
    }
    huffsize[p] = 0;
    lastp = p;

    code = 0;
    si = huffsize[0];
    p = 0;
    while (huffsize[p] != 0) {
      while (huffsize[p] == si) {
        huffcode[p++] = code;
        code++;
      }
      code <<= 1;
      si++;
    }

    for (p = 0; p < lastp; p++) {
      DC_matrix0[valDCluminance[p]][0] = huffcode[p];
      DC_matrix0[valDCluminance[p]][1] = huffsize[p];
    }

    /*
     * Init of the AC hufmann code for luminance matrix [][][0] is the code &
     * matrix[][][1] is the number of bit
     */

    p = 0;
    for (l = 1; l <= 16; l++) {
      for (i = 1; i <= bitsACluminance[l]; i++) {
        huffsize[p++] = l;
      }
    }
    huffsize[p] = 0;
    lastp = p;

    code = 0;
    si = huffsize[0];
    p = 0;
    while (huffsize[p] != 0) {
      while (huffsize[p] == si) {
        huffcode[p++] = code;
        code++;
      }
      code <<= 1;
      si++;
    }
    for (int q = 0; q < lastp; q++) {
      AC_matrix0[valACluminance[q]][0] = huffcode[q];
      AC_matrix0[valACluminance[q]][1] = huffsize[q];
    }

    DC_matrix[0] = DC_matrix0;
    DC_matrix[1] = DC_matrix1;
    AC_matrix[0] = AC_matrix0;
    AC_matrix[1] = AC_matrix1;
  }

}

/*
 * JpegInfo - Given an image, sets default information about it and divides it
 * into its constituant components, downsizing those that need to be.
 */

class JpegInfo {
  String Comment;

  public Image imageobj;

  public int imageHeight;

  public int imageWidth;

  public int BlockWidth[];

  public int BlockHeight[];

  // the following are set as the default
  public int Precision = 8;

  public int NumberOfComponents = 3;

  public Object Components[];

  public int[] CompID = { 1, 2, 3 };

  public int[] HsampFactor = { 1, 1, 1 };

  public int[] VsampFactor = { 1, 1, 1 };

  public int[] QtableNumber = { 0, 1, 1 };

  public int[] DCtableNumber = { 0, 1, 1 };

  public int[] ACtableNumber = { 0, 1, 1 };

  public boolean[] lastColumnIsDummy = { false, false, false };

  public boolean[] lastRowIsDummy = { false, false, false };

  public int Ss = 0;

  public int Se = 63;

  public int Ah = 0;

  public int Al = 0;

  public int compWidth[], compHeight[];

  public int MaxHsampFactor;

  public int MaxVsampFactor;

  public JpegInfo(Image image) {
    Components = new Object[NumberOfComponents];
    compWidth = new int[NumberOfComponents];
    compHeight = new int[NumberOfComponents];
    BlockWidth = new int[NumberOfComponents];
    BlockHeight = new int[NumberOfComponents];
    imageobj = image;
    imageWidth = image.getWidth(null);
    imageHeight = image.getHeight(null);
    Comment = "JPEG Encoder Copyright 1998, James R. Weeks and BioElectroMech.  ";
    getYCCArray();
  }

  public void setComment(String comment) {
    Comment.concat(comment);
  }

  public String getComment() {
    return Comment;
  }

  /*
   * This method creates and fills three arrays, Y, Cb, and Cr using the input
   * image.
   */

  private void getYCCArray() {
    int values[] = new int[imageWidth * imageHeight];
    int r, g, b, y, x;
    // In order to minimize the chance that grabPixels will throw an exception
    // it may be necessary to grab some pixels every few scanlines and process
    // those before going for more. The time expense may be prohibitive.
    // However, for a situation where memory overhead is a concern, this may be
    // the only choice.
    PixelGrabber grabber = new PixelGrabber(imageobj.getSource(), 0, 0, imageWidth, imageHeight,
        values, 0, imageWidth);
    MaxHsampFactor = 1;
    MaxVsampFactor = 1;
    for (y = 0; y < NumberOfComponents; y++) {
      MaxHsampFactor = Math.max(MaxHsampFactor, HsampFactor[y]);
      MaxVsampFactor = Math.max(MaxVsampFactor, VsampFactor[y]);
    }
    for (y = 0; y < NumberOfComponents; y++) {
      compWidth[y] = (((imageWidth % 8 != 0) ? ((int) Math.ceil(imageWidth / 8.0)) * 8 : imageWidth) / MaxHsampFactor)
          * HsampFactor[y];
      if (compWidth[y] != ((imageWidth / MaxHsampFactor) * HsampFactor[y])) {
        lastColumnIsDummy[y] = true;
      }
      // results in a multiple of 8 for compWidth
      // this will make the rest of the program fail for the unlikely
      // event that someone tries to compress an 16 x 16 pixel image
      // which would of course be worse than pointless
      BlockWidth[y] = (int) Math.ceil(compWidth[y] / 8.0);
      compHeight[y] = (((imageHeight % 8 != 0) ? ((int) Math.ceil(imageHeight / 8.0)) * 8
          : imageHeight) / MaxVsampFactor)
          * VsampFactor[y];
      if (compHeight[y] != ((imageHeight / MaxVsampFactor) * VsampFactor[y])) {
        lastRowIsDummy[y] = true;
      }
      BlockHeight[y] = (int) Math.ceil(compHeight[y] / 8.0);
    }
    try {
      if (grabber.grabPixels() != true) {
        try {
          throw new AWTException("Grabber returned false: " + grabber.status());
        } catch (Exception e) {
        }
      }
    } catch (InterruptedException e) {
    }
    float Y[][] = new float[compHeight[0]][compWidth[0]];
    float Cr1[][] = new float[compHeight[0]][compWidth[0]];
    float Cb1[][] = new float[compHeight[0]][compWidth[0]];
    // float Cb2[][] = new float[compHeight[1]][compWidth[1]];
    // float Cr2[][] = new float[compHeight[2]][compWidth[2]];
    int index = 0;
    for (y = 0; y < imageHeight; ++y) {
      for (x = 0; x < imageWidth; ++x) {
        r = ((values[index] >> 16) & 0xff);
        g = ((values[index] >> 8) & 0xff);
        b = (values[index] & 0xff);

        // The following three lines are a more correct color conversion but
        // the current conversion technique is sufficient and results in a
        // higher
        // compression rate.
        // Y[y][x] = 16 + (float)(0.8588*(0.299 * (float)r + 0.587 * (float)g +
        // 0.114 * (float)b ));
        // Cb1[y][x] = 128 + (float)(0.8784*(-0.16874 * (float)r - 0.33126 *
        // (float)g + 0.5 * (float)b));
        // Cr1[y][x] = 128 + (float)(0.8784*(0.5 * (float)r - 0.41869 * (float)g
        // - 0.08131 * (float)b));
        Y[y][x] = (float) ((0.299 * r + 0.587 * g + 0.114 * b));
        Cb1[y][x] = 128 + (float) ((-0.16874 * r - 0.33126 * g + 0.5 * b));
        Cr1[y][x] = 128 + (float) ((0.5 * r - 0.41869 * g - 0.08131 * b));
        index++;
      }
    }

    // Need a way to set the H and V sample factors before allowing
    // downsampling.
    // For now (04/04/98) downsampling must be hard coded.
    // Until a better downsampler is implemented, this will not be done.
    // Downsampling is currently supported. The downsampling method here
    // is a simple box filter.

    Components[0] = Y;
    // Cb2 = DownSample(Cb1, 1);
    Components[1] = Cb1;
    // Cr2 = DownSample(Cr1, 2);
    Components[2] = Cr1;
  }

  float[][] DownSample(float[][] C, int comp) {
    int inrow, incol;
    int outrow, outcol;
    float output[][];
    int bias;
    inrow = 0;
    incol = 0;
    output = new float[compHeight[comp]][compWidth[comp]];
    for (outrow = 0; outrow < compHeight[comp]; outrow++) {
      bias = 1;
      for (outcol = 0; outcol < compWidth[comp]; outcol++) {
        output[outrow][outcol] = (C[inrow][incol++] + C[inrow++][incol--] + C[inrow][incol++]
            + C[inrow--][incol++] + bias)
            / (float) 4.0;
        bias ^= 3;
      }
      inrow += 2;
      incol = 0;
    }
    return output;
  }
}

   
    
    
    
  








Related examples in the same category

1.Encoding an image to a JPEG file
2.Rescale JPG
3.Get Jpeg Properties
4.Takes a list of JPEG image files and convert them into a QuickTime movie.
5.Returns all jpg images from a directory in an array
6.Writes an image to an output stream as a JPEG file. The JPEG quality can be specified in percent.