Circle shape : Geometry « 2D Graphics GUI « Java






Circle shape

       


//package net.slashie.utils;

import java.util.ArrayList;
import java.util.List;

public class Circle {
  private Position center;
  private int radius;
  public Circle (Position p, int radius){
    this.center = p;
    this.radius = radius;
  }
  
  public List<Position> getPoints (){
    List<Position> ret = new ArrayList<Position>();
    int d = 3 - (2 * radius);
    Position runner = new Position(0, radius);
    Position zero = new Position(0,0);
    while (true) {
      if (Position.flatDistance(zero, runner) <= radius)
        addPoints(center, runner.x,runner.y, ret);
      if (d < 0)
        d = d + (4*runner.x)+6;
      else {
        d = d + 4 * (runner.x-runner.y) +10;
        runner.y --;
      }
      runner.x++;
      if (runner.y == 0)
        break;
    }
    return ret;
  }


  private void addPoints(Position center, int x, int y, List<Position> collection){
    collection.add(new Position(center.x + x, center.y + y));
    collection.add(new Position(center.x + x, center.y - y));
    collection.add(new Position(center.x - x, center.y + y));
    collection.add(new Position(center.x - x, center.y - y));
    collection.add(new Position(center.x + y, center.y + x));
    collection.add(new Position(center.x + y, center.y - x));
    collection.add(new Position(center.x - y, center.y + x));
    collection.add(new Position(center.x - y, center.y - x));
  }

}
 class Position implements java.io.Serializable {
  public int x,y,z;

  public int x(){
    return x;
  }
  
  public int y(){
    return y;
  }
  
  public int z(){
    return z;
  }
  
  
  public Position(int px, int py){
    x = px;
    y = py;
  }

  public Position(int px, int py, int pz){
    this(px, py);
    z = pz;
  }

  public Position(Position p){
    x = p.x;
    y = p.y;
    z = p.z;
  }

  public static Position add (Position a, Position b){
    return new Position (a.x + b.x, a.y + b.y, a.z + b.z);
  }

  public static Position subs (Position a, Position b){
    return new Position (a.x - b.x, a.y - b.y, a.z - b.z);
  }

  public static Position mul(Position a, int c){
    return new Position (a.x * c, a.y * c, a.z * c);
  }

  public static Position mul(Position a, Position b){
    return new Position (a.x * b.x, a.y * b.y, a.z * b.z);
  }

  public void mul(Position pos){
    x *= pos.x;
    y *= pos.y;
    z *= pos.z;
  }

  public boolean equals(Object o){
    if (o == null)
      return false;
    try {
      if (((Position)o).x == x && ((Position)o).y == y && ((Position)o).z == z){
        return true;
      }
    } catch (ClassCastException cce){
      throw new RuntimeException("Error comparing points "+this+" "+o, cce);
    }
    return false;
  }
  
  public int hashCode() {
    return toString().hashCode();
  }


  public String toString(){
    return "("+x+","+y+","+z+")";
  }

  public static int flatDistance(Position a, Position b){
    return (int) Math.sqrt(Math.pow(a.x - b.x, 2) + Math.pow (a.y - b.y, 2));
  }

  public static int flatDistance(int x1, int y1, int x2, int y2){
    return (int) Math.sqrt(Math.pow(x1 - x2, 2) + Math.pow (y1 - y2, 2));
  }
  
  public static int distance(Position a, Position b){
    return (int) Math.sqrt(Math.pow(a.x - b.x, 2) + Math.pow (a.y - b.y, 2));
  }
  
/*  public static int distance(Position a, Position b){
    return (int) Math.s(Math.pow(a.x - b.x, 2) + Math.pow (a.y - b.y, 2));
  }*/

  public void add(Position p){
    x += p.x;
    y += p.y;
    z += p.z;

  }


}

   
    
    
    
    
    
    
  








Related examples in the same category

1.Collection of geometry utility methods
2.Unions Rectangle2D
3.Interpolates points given in the 2D plane
4.Returns distance between two sets of coords
5.Returns distance between 3D set of coords
6.Returns closest point on segment to point
7.Calculate Angle From
8.Returns distance to segment
9.Hexagon demo
10.Implements an Vector in 3D space.
11.Implementation of the 4 dimensional vector.
12.Quaternion
13.Geometry Utilities
14.This is a Polygon that allows the user to flip and swap the points along it's axis.
15.Fast trigonometric operationsFast trigonometric operations
16.A class to represent a latitude and longitude
17.An undirected graph that keeps track of connected components (groups).
18.Generates n logarithmically-spaced points between d1 and d2 using the provided base.
19.Returns a dimension where width and height are inside the bounds of the maxWidth and maxHeight parameters